4.7 Article

Modeling of coupled deformation, water flow and gas transport in soil slopes subjected to rain infiltration

期刊

SCIENCE CHINA-TECHNOLOGICAL SCIENCES
卷 54, 期 10, 页码 2561-2575

出版社

SCIENCE PRESS
DOI: 10.1007/s11431-011-4504-z

关键词

coupled solid-water-air model; rain infiltration; soil slope; stability analysis; finite element analysis

资金

  1. National Natural Science Foundation of China [50839004, 51079107]
  2. Program for New Century Excellent Talents in University [NCET-09-0610]

向作者/读者索取更多资源

Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically involved. Most previous studies on the unsaturated flow and its influence on slope stability were based on the single-phase water flow model (i.e., the Richards Equation) or the water-air two-phase flow model. The effects of gas transport and soil deformation on the movement of groundwater and the evolution of slope stability were less examined with a coupled solid-water-air model. In this paper, a numerical model was established based on the principles of the continuum mechanics and the averaging approach of the mixture theory and implemented in an FEM code for analysis of the coupled deformation, water flow and gas transport in porous media. The proposed model and the computer code were validated by the Liakopoulos drainage test over a sand column, and the significant effect of the lateral air boundary condition on the draining process of water was discussed. On this basis, the coupled processes of groundwater flow, gas transport and soil deformation in a homogeneous soil slope under a long heavy rainfall were simulated with the proposed three-phase model, and the numerical results revealed the remarkable delaying effects of gas transport and soil deformation on the propagation of the wetting front and the evolution of the slope stability. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据