4.7 Article

SC-IrO2NR-carbon hybrid: A catalyst with high electrochemical stability for oxygen reduction

期刊

SCIENCE CHINA-CHEMISTRY
卷 56, 期 1, 页码 131-136

出版社

SCIENCE PRESS
DOI: 10.1007/s11426-012-4769-5

关键词

single crystal nanorods; IrO2; electrochemical stability; oxygen reduction reaction

资金

  1. National High Technology Research and Development Program of China [2008AA11A106]
  2. National Natural Science Foundation of China [50632050]

向作者/读者索取更多资源

The enhanced electrochemical stability of the synthesized hybrid catalyst has been demonstrated by the introduction of the synergistic effect between carbon powder additive and the prepared catalyst. Single crystal IrO2 nanorod (SC-IrO2NR) catalyst was prepared by a sol-gel method. The structure and performance of the catalyst sample were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), rotating disk electrode (RDE) and cyclic voltammetry (CV) measurements. XRD patterns and TEM images indicate that the catalyst sample has a rutile IrO2 single crystal nanorod structure. The onset potential for oxygen reduction reaction (ORR) of the SC-IrO2NR-carbon hybrid catalyst specimen is 0.75 V (vs. RHE) in RDE measurement. CV and RDE test results show that the SC-IrO2NR-carbon hybrid catalyst has a better electrochemical stability in comparison with the commercial Pt/C catalyst, with attenuation ratios of 17.67% and 44.60% for the SC-IrO2NR-carbon hybrid catalyst and the commercial Pt/C catalyst after 1500 cycles, respectively. Therefore, in terms of stability, the SC-IrO2NR-carbon hybrid catalyst has a promising potential in the application of the proton exchange membrane fuel cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据