4.6 Article

Facile fabrication of N-doped hierarchical porous carbon@CNT coaxial nanocables with high performance for energy storage and conversion

期刊

RSC ADVANCES
卷 5, 期 117, 页码 96580-96586

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra18624b

关键词

-

资金

  1. National Natural Science Foundation of China [21571157, 51173170, 51473149]
  2. Program for New Century Excellent Talents in Universities (NCET)
  3. Open Project Foundation of Key Laboratory of Advanced Energy Materials Chemistry of Nankai University [2015-32]

向作者/读者索取更多资源

Developing a facile and cost-effective design and fabrication method to realize an optimal carbon nanoarchitecture containing hierarchical pores, appropriate N doping and high conductivity for high-performance in energy storage and conversion is still a challenge. Herein, we have facilely achieved an intriguing heterostructure of N-doped hierarchical porous carbon@CNT coaxial nanocables (HPNCNTs) via a one-step carbonization of resorcinol-melamine-formaldehyde resin (RMF)@CNT shell@core nanostructures. Significantly, we have demonstrated that the RMF@CNT shell@core nanostructures, with their inherent microporous structure and proper N-containing functionalities, represent the ideal precursor for realizing carbon heterostructures for electrochemical performance optimization for supercapacitors and in the oxygen reduction reaction (ORR). The results show that the HPNCNTs exhibit a specific capacitance of 284 F g(-1), much higher than that of CNTs and most of the reported N-doped carbons, a good rate capability and a robust cycling performance with no capacity fading even after 6000 cycles. Furthermore, HPNCNTs show high electrocatalytic activity for the ORR with an onset potential of -0.04 V (vs. Ag/AgCl), a dominant four-electron pathway (n = 3.84), long-term stability, and excellent resistance to crossover effects superior to that of the commercial Pt/C. The present investigation opens the avenue for creating carbon heterostructures with a desirable porous tissue and morphology through a facile and general route for future high-performance renewable energy storage and conversion devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据