4.2 Article

Effects of potassium deficiency and replacement of potassium by sodium on sugar beet plants

期刊

RUSSIAN JOURNAL OF PLANT PHYSIOLOGY
卷 61, 期 2, 页码 224-230

出版社

PLEIADES PUBLISHING INC
DOI: 10.1134/S1021443714020101

关键词

Beta vulgaris; potassium-sodium replacement; potassium deficiency; sugar beet; antioxidant enzymes; free amino acids

资金

  1. International Cooperation Project [2010DFAN31530]

向作者/读者索取更多资源

Two sugar beet (Beta vulgaris L.) genotypes were cultivated at different K+/Na+ concentration in nutrient solutions (mM, 3/0 (control groups), 0.03/2.97 (K-Na replacement groups), and 0.03/0 (K deficiency groups)) to investigate the effects of potassium deficiency and replacement of potassium by sodium on plant growth and to explore how sodium can compensate for a lack of potassium. After 22 days of growth were determined: (i) dry weights of leaves, stems, and roots, (ii) the Na+ and K+ contents, (iii) MDA level, (iv) the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), and (v) the level of free amino acids. Potassium deficit inhibited plant growth, decreased the K+ content in leaves and roots, activated GPX and SOD, suppressed CAT activity, and increased the content of most amino acids. In K-Na replacement groups, the effects of K+ deficiency, including changes in the MDA level, antioxidant enzyme activities, and the level of free amino acids, were alleviated, but the degree of recovery did not reach the values characteristic for the control groups. Based on these results, we concluded that low potassium could lead to the inhibition of seedling growth, oxidative damage, and amino acid accumulation. While sodium was able to substitute potassium to a large extent, it cannot fulfil potassium fundamental role as an essential nutrient in sugar beet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据