4.4 Article

The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R

期刊

RNA
卷 15, 期 2, 页码 316-326

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1261/rna.1197309

关键词

poly(A) polymerase I; polyadenylation; PNPase; RNase II; RNase R; rpsO mRNA

资金

  1. Fundacao para a Ciencia e Tecnologia (FCT), Portugal
  2. Centre National de la Recherche Scientifique [UPR9073]
  3. Paris 7 University (France)

向作者/读者索取更多资源

Polyadenylation is an important factor controlling RNA degradation and RNA quality control mechanisms. In this report we demonstrate for the first time that RNase R has in vivo affinity for polyadenylated RNA and can be a key enzyme involved in poly(A) metabolism. RNase II and PNPase, two major RNA exonucleases present in Escherichia coli, could not account for all the poly(A)-dependent degradation of the rpsO mRNA. RNase II can remove the poly(A) tails but fails to degrade the mRNA as it cannot overcome the RNA termination hairpin, while PNPase plays only a modest role in this degradation. We now demonstrate that in the absence of RNase E, RNase R is the relevant factor in the poly(A)-dependent degradation of the rpsO mRNA. Moreover, we have found that the RNase R inactivation counteracts the extended degradation of this transcript observed in RNase II-deficient cells. Elongated rpsO transcripts harboring increasing poly(A) tails are specifically recognized by RNase R and strongly accumulate in the absence of this exonuclease. The 39 oligo(A) extension may stimulate the binding of RNase R, allowing the complete degradation of the mRNA, as RNase R is not susceptible to RNA secondary structures. Moreover, this regulation is shown to occur despite the presence of PNPase. Similar results were observed with the rpsT mRNA. This report shows that polyadenylation favors in vivo the RNase R-mediated pathways of RNA degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据