4.5 Article

Ribosomal protein mRNAs are primary targets of regulation in RNase-L-induced senescence

期刊

RNA BIOLOGY
卷 6, 期 3, 页码 305-315

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/rna.6.3.8526

关键词

RNase-L; ribosomal protein; senescence; mRNA stability; 2 '-5 '-oligoadenylate

资金

  1. National Institute on Aging [AG20355]
  2. NIH
  3. Veteran's Administration
  4. NIA Intramural Research Program

向作者/读者索取更多资源

The endoribonuclease RNase-L requires 2',5'-linked oligoadenylates for activation, and mediates antiviral and antiproliferative activities. We previously determined that RNase-L activation induces senescence; to determine potential mechanisms underlying this activity, we used microarrays to identify RNase-L-regulated mRNAs. RNase-L activation affected affected a finite number of transcripts, and thus does not lead to a global change in mRNA turnover. The largest classes of downregulated transcripts, that represent candidate RNase-L substrates, function in protein biosynthesis, metabolism and proliferation. Among these, mRNAs encoding ribosomal proteins (RPs) were particularly enriched. The reduced levels of four RP mRNAs corresponded with a decrease in their half lives and a physical association with an RNase-L-ribonucleoprotein (RNP) complex in cells, suggesting that they represent authentic RNase-L substrates. Sequence and structural analysis of the downregulated mRNAs identified a putative RNase-L target motif that was used for the in silico identification of a novel RNase-L-RNP-interacting transcript. The downregulation of RP mRNAs corresponded with a marked reduction in protein translation, consistent with the roles of RP proteins in ribosome function. Our data support a model in which the RNase-L-mediated degradation of RP mRNAs inhibits translation, and may contribute to its antiproliferative, senescence inducing and tumor suppressor activities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据