4.3 Article

E2F1 enhances glycolysis through suppressing Sirt6 transcription in cancer cells

期刊

ONCOTARGET
卷 6, 期 13, 页码 11252-11263

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.3594

关键词

SIRT6; E2F1; glycolysis; metabolism; HDAC1

资金

  1. National Institutes of Health National Cancer Institute Moffitt Cancer Center Support Grant [P30-CA076292-11S5]

向作者/读者索取更多资源

The fast proliferation of cancer cells requires reprogramming of its energy metabolism with aerobic glycolysis as a major energy source. Sirt6, a class III histone deacetylase, has been shown to down regulate glycolysis by inhibiting the expression of several key glycolytic genes. Based on the published study on the metabolic phenotype of E2F1 -/- mice and SIRT6 -/- mice, we hypothesize that E2F1 enhances glycolysis and inhibits the expression of Sirt6. Indeed, over-expressing of E2F1, but not its DNA binding deficient mutant, significantly enhanced glucose uptake and lactate production in bladder and prostate cancer cell lines. E2F1 over-expression also suppressed Sirt6 expression and function. Moreover, E2F1 directly bound to Sirt6 promoter and suppressed Sirt6 promoter activity under both normoxic and hypoxic culture conditions. E2F1 siRNA blocked the up-regulation of E2F1 under hypoxia, increased Sirt6 expression and decreased glycolysis compared to those of scrambled siRNA transected cells. Furthermore, HDAC1 deacetylated E2F1 and diminished its transcription suppression of Sirt6 promoter. Treatment with the HDAC inhibitor, trichostatin A (TSA), suppressed Sirt6 promoter activity with increased binding of acetylated E2F1 to Sirt6 promoter. Mutating the E2F1 binding site on the proximal Sirt6 promoter abolished the suppression of Sirt6 transcription by TSA. These data indicate a novel oncogenic role of E2F1, i.e. enhancing glycolysis by suppressing Sirt6 transcription.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据