4.5 Article Proceedings Paper

Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 83, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4738657

关键词

-

向作者/读者索取更多资源

A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738657]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Multidisciplinary

Evidence for suprathermal ion distribution in burning plasmas

E. P. Hartouni, A. S. Moore, A. J. Crilly, B. D. Appelbe, P. A. Amendt, K. L. Baker, D. T. Casey, D. S. Clark, T. Doppner, M. J. Eckart, J. E. Field, M. Gatu-Johnson, G. P. Grim, R. Hatarik, J. Jeet, S. M. Kerr, J. Kilkenny, A. L. Kritcher, K. D. Meaney, J. L. Milovich, D. H. Munro, R. C. Nora, A. E. Pak, J. E. Ralph, H. F. Robey, J. S. Ross, D. J. Schlossberg, S. M. Sepke, B. K. Spears, C. Young, A. B. Zylstra

Summary: Inertial confinement fusion experiments at the National Ignition Facility aim to achieve sustained thermonuclear burn for energy generation. This study investigates the departure from hydrodynamic behavior when fusion reactions become the primary source of plasma heating. The relationship between ion temperature and mean ion kinetic energy is analyzed using neutron spectrum moments.

NATURE PHYSICS (2023)

Article Physics, Multidisciplinary

Towards the first plasma-electron screening experiment

Daniel T. Casey, Chris R. Weber, Alex B. Zylstra, Charlie J. Cerjan, Ed Hartouni, Matthias Hohenberger, Laurent Divol, David S. Dearborn, Neel Kabadi, Brandon Lahmann, Maria Gatu Johnson, Johan A. Frenje

Summary: The enhancement of fusion reaction rates by electron screening is an important plasma-nuclear effect but has not been experimentally observed. Experiments using inertial confinement fusion (ICF) implosions may provide an opportunity to observe this effect. The experiments at the National Ignition Facility (NIF) have reached the relevant physical regime, but the expected impacts of plasma screening on nuclear reaction rates are currently too small and need to be increased. This work lays the foundation for future efforts to develop a platform capable of observing plasma electron screening.

FRONTIERS IN PHYSICS (2023)

Article Physics, Fluids & Plasmas

Enhanced electron acceleration by high-intensity lasers in extended (confined) preplasma in cone targets

D. R. Rusby, G. E. Cochran, A. Aghedo, F. Albert, C. D. Armstrong, A. Haid, A. J. Kemp, S. M. Kerr, P. M. King, N. Lemos, M. J. -E. Manuel, T. Ma, A. G. MacPhee, I. Pagano, A. Pak, G. G. Scott, C. W. Siders, R. A. Simpson, M. Sinclair, S. C. Wilks, G. J. Williams, A. J. Mackinnon

Summary: We report experimental results showing that laser interaction with cone targets significantly increases the number and temperature of hot electrons compared to traditional planar targets. The increase in plasma density within the cone target geometry, induced by a prepulse, is found to be the main cause for this enhancement. Three-dimensional hydrodynamic simulations and two-dimensional particle-in-cell simulations support this finding.

PHYSICS OF PLASMAS (2023)

Correction Physics, Fluids & Plasmas

First graded metal pushered single shell capsule implosions on the National Ignition Facility (vol 29, 052707, 2022)

E. L. Dewald, S. A. MacLaren, D. A. Martinez, J. E. Pino, R. E. Tipton, D. D. M. Ho, C. V. Young, C. Horwood, S. F. Khan, E. P. Hartouni, M. S. Rubery, M. Millot, A. R. Vazsonyi, S. Vonhof, G. Mellos, S. Johnson, V. A. Smalyuk, F. Graziani, E. R. Monzon, R. Tommasini, D. Alessi, S. Ayers, G. N. Hall, J. Holder, D. Kalantar, A. J. MacKinnon, J. Okui, M. Prantil, J. -m. Di Nicola, T. Lanier, A. Thomas, S. Yang, H. W. Xu, H. Huang, J. Bae, C. W. Kong, N. Rice, Y. M. Wang, P. Volegov, M. S. Freeman, C. Wilde

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility

K. L. Baker, C. A. Thomas, O. L. Landen, S. Haan, J. D. Lindl, D. T. Casey, C. Young, R. Nora, O. A. Hurricane, D. A. Callahan, O. Jones, L. Berzak Hopkins, S. Khan, B. K. Spears, S. Le Pape, N. B. Meezan, D. D. Ho, T. Doppner, D. Hinkel, E. L. Dewald, R. Tommasini, M. Hohenberger, C. Weber, D. Clark, D. T. Woods, J. L. Milovich, D. Strozzi, A. Kritcher, H. F. Robey, J. S. Ross, V. A. Smalyuk, P. A. Amendt, B. Bachmann, L. R. Benedetti, R. Bionta, P. M. Celliers, D. Fittinghoff, C. Goyon, R. Hatarik, N. Izumi, M. Gatu Johnson, G. Kyrala, T. Ma, K. Meaney, M. Millot, S. R. Nagel, P. K. Patel, D. Turnbull, P. L. Volegov, C. Yeamans, C. Wilde

Summary: In indirect-drive implosions, increasing laser peak power and radiation drive temperature can improve the core hot spot energy, pressure, and neutron yield. This improvement has been quantified and explained by simple analytic scalings validated by 1D simulations. Extrapolating from existing data, it is possible to achieve a yield of 2-3x10^17 (0.5-0.7 MJ) using only 1.8 MJ of laser energy in a low gas-fill 5.4 mm diameter Hohlraum at the 500 TW National Ignition Facility peak power limit.

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Measuring and simulating ice-ablator mix in inertial confinement fusion

B. Bachmann, S. A. MacLaren, L. Masse, S. Bhandarkar, T. Briggs, D. Casey, L. Divol, T. Doeppner, D. Fittinghoff, M. Freeman, S. Haan, G. N. Hall, B. Hammel, E. Hartouni, N. Izumi, V. Geppert-Kleinrath, S. Khan, B. Kozioziemski, C. Krauland, O. Landen, D. Mariscal, E. Marley, K. Meaney, G. Mellos, A. Moore, A. Pak, P. Patel, M. Ratledge, N. Rice, M. Rubery, J. Salmonson, J. Sater, D. Schlossberg, M. Schneider, V. A. Smalyuk, C. Trosseille, P. Volegov, C. Weber, G. J. Williams, A. Wray

Summary: Fuel-ablator mix has a significant impact on the performance of inertial confinement fusion experiments. Studying this mix through experiments and simulations can improve our understanding of these experiments and lead to higher yields and increased robustness.

PHYSICS OF PLASMAS (2023)

Article Instruments & Instrumentation

Compact high repetition rate Thomson parabola ion spectrometer

R. Nedbailo, J. Park, R. Hollinger, S. Wang, D. Mariscal, J. Morrison, H. Song, G. Zeraouli, G. G. Scott, T. Ma, J. J. Rocca

Summary: We have developed a compact Thomson parabola ion spectrometer that can characterize the energy spectra of multi-MeV ion beams from laser produced plasmas at high rates. This diagnostic utilizes a fast plastic scintillator (EJ-260) and an optical imaging system connected to a cooled camera for data acquisition. Different ion energy ranges can be investigated using a modular magnet setup, variable electric field, and varying drift distance. Real-time ion spectral analysis is possible with appropriate software, allowing for experimental control at multi-Hz repetition rates.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Instruments & Instrumentation

Determining spectral response of the National Ignition Facility particle time of flight diagnostic to x rays

B. Reichelt, N. Kabadi, J. Pearcy, M. Gatu Johnson, S. Dannhoff, B. Lahmann, J. Frenje, C. K. Li, G. Sutcliffe, J. Kunimune, R. Petrasso, H. Sio, A. Moore, E. Mariscal, E. Hartouni

Summary: This paper develops a process to determine the x-ray sensitivity of PTOF detectors and relates it to the intrinsic properties of the detector. It is demonstrated that the diamond sample has significant non-homogeneity and the charge collection can be described by a linear model ax + b, where a = 0.63 +/- 0.16 V-1 mm(-1) and b = 0.00 +/- 0.04 V-1. The electron to hole mobility ratio is confirmed to be 1.5 +/- 1.0 and the effective bandgap is 1.8 eV, leading to an increased sensitivity.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Review Instruments & Instrumentation

Charged particle diagnostics for inertial confinement fusion and high-energy-density physics experiments

M. Gatu Johnson

Summary: MeV-range ions generated in ICF and high-energy-density physics experiments carry important information, such as fusion reaction yield, implosion areal density, electron temperature, and electric and magnetic fields. This paper reviews the principles of obtaining this information from data and describes the charged particle diagnostic suite available at major US ICF facilities. It discusses time-integrating instruments, time-resolving detectors, and charged-particle radiography setups for measuring ion emission and probing plasma experiments.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Review Instruments & Instrumentation

Neutron time of flight (nToF) detectors for inertial fusion experiments

A. S. Moore, D. J. Schlossberg, B. D. Appelbe, G. A. Chandler, A. J. Crilly, M. J. Eckart, C. J. Forrest, V. Y. Glebov, G. P. Grim, E. P. Hartouni, R. Hatarik, S. M. Kerr, J. Kilkenny, J. P. Knauer

Summary: Neutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information about the plasma conditions. The neutron time-of-flight (nToF) technique is utilized to measure the neutron energy spectrum due to the short emission time in ICF experiments. By placing detectors several meters away from the source, the neutron energy spectrum can be measured with high precision. We review the current state of nToF detectors at ICF facilities in the United States, including the measured physics, deployed detector technologies, and analysis techniques used.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Physics, Fluids & Plasmas

Measuring stopping power in warm dense matter plasmas at OMEGA

B. Lahmann, A. M. Saunders, T. Doppner, J. A. Frenje, S. H. Glenzer, M. Gatu-Johnson, G. Sutcliffe, A. B. Zylstra, R. D. Petrasso

Summary: A platform has been developed to measure accurately the stopping power of high-energy protons in warm dense matter (WDM) plasmas using x-ray Thomson scattering. In this study, stopping power measurements were successfully conducted in both WDM beryllium and boron plasmas. An increase in stopping power was observed in the boron experiments compared to their cold target counterparts, which agreed well with models accounting for the partial ionization of the plasma.

PLASMA PHYSICS AND CONTROLLED FUSION (2023)

Article Physics, Multidisciplinary

Indirect evidence for elemental hydrogen in laser-compressed hydrocarbons

D. Kraus, J. Vorberger, N. J. Hartley, J. Luetgert, M. Roedel, D. Chekrygina, T. Doppner, T. van Driel, R. W. Falcone, L. B. Fletcher, S. Frydrych, E. Galtier, D. O. Gericke, S. H. Glenzer, E. Granados, Y. Inubushi, N. Kamimura, K. Katagiri, M. J. MacDonald, A. J. MacKinnon, T. Matsuoka, K. Miyanishi, E. E. McBride, I. Nam, P. Neumayer, N. Ozaki, A. Pak, A. Ravasio, A. M. Saunders, A. K. Schuster, M. G. Stevenson, K. Sueda, P. Sun, T. Togashi, K. Voigt, M. Yabashi, T. Yabuuchi

Summary: We demonstrate a simplified experimental approach to investigate liquid metallic hydrogen, providing indirect evidence for its creation in shock-compressed plastics. This approach not only helps understand the internal structure and evolution of giant planets, but also offers a new benchmark for theoretical studies under extreme pressures and temperatures. Furthermore, it may lead to opportunities in probing the chemical behavior of metallic hydrogen in mixture with other elements and synthesizing new materials.

PHYSICAL REVIEW RESEARCH (2023)

Article Physics, Nuclear

γ-to-neutron branching ratio for deuterium-tritium fusion determined using high-energy-density plasmas and a fused silica Cherenkov detector

Z. L. Mohamed, Y. Kim, J. P. Knauer, M. S. Rubery

Summary: A fused silica Cherenkov detector was used to measure DT gammas in direct-drive cryogenic experiments. The detector was calibrated using a 4.4 MeV gamma from carbon. The measurement resulted in a ground state only gamma-to-neutron branching ratio lower than accelerator-based measurements.

PHYSICAL REVIEW C (2023)

暂无数据