4.5 Article

SI traceable calibration of an instrumented indentation sensor spring constant using electrostatic force

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 79, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2987695

关键词

-

向作者/读者索取更多资源

We present a measurement scheme for creating reference electrostatic forces that are traceable to the International System of Units. This scheme yields reference forces suitable for calibrating the force sensitivity of instrumented indentation machines and atomic force microscopes. Forces between 10 and 200 mu N were created and expressed in terms of the voltage, length, and capacitance between a pair of interacting electrodes. The electrodes comprised an electrically conductive sphere mounted as a tip on an instrumented indentation sensor, and a planar counterelectrode fixed to a sample stage in close proximity to the sphere. For comparison, we applied mechanical forces of similar magnitudes, first using deadweights and then using a reference force sensor. The deflection of the sensor due to the various applied forces was measured using an interferometer. A spring constant for the sensor was computed from the observed records of force versus displacement. Each procedure yielded a relative standard uncertainty of approximately 1%; however, the electrostatic technique is scalable and could provide traceable reference forces as small as a few hundred piconewtons, a range far below anything yet achieved using deadweights. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2987695]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据