4.5 Article

Control and Motion Planning of a Nonholonomic Parallel Orienting Platform

出版社

ASME
DOI: 10.1115/1.4029891

关键词

orienting platform; nonholonomic constraint; parallel manipulator

资金

  1. National Science Centre, Poland [DEC-2013/2009/B/ST7/02368]

向作者/读者索取更多资源

An orienting platform is a mechanism which allows rotation of a spatial object without translational motion of that object. In this work, we study a parallel platform with one passive nonholonomic spherical joint and two series of spherical, actuated prismatic and universal joints (the platform is also known in literature as an (nS)-2SPU wrist). To solve the control and motion planning problems, an analytic approach is used. The design of practical stabilization and tracking algorithm is based on transverse functions and a method for motion planning respecting mechanical singularities is derived from endogenous configuration space approach. It is shown that the system is controllable and locally equivalent to the chained form system. Then, the stabilization, tracking, and motion planning algorithms are proposed. Results are verified with computer simulations. A combination of the open-loop motion planning algorithm and the closed-loop tracking provide a tool for designing a motion planning algorithm respecting mechanical singularities and robust to input disturbances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据