4.5 Article

Breath profiles by electronic nose correlate with systemic markers but not ozone response

期刊

RESPIRATORY MEDICINE
卷 105, 期 9, 页码 1352-1363

出版社

W B SAUNDERS CO LTD
DOI: 10.1016/j.rmed.2011.03.002

关键词

Electronic nose; Volatile organic compounds; Ozone challenge; Non-invasive monitoring

资金

  1. Deutsche Forschungsgemeinschaft [BI 1403/1-1]
  2. Fraunhofer ITEM

向作者/读者索取更多资源

Background: The evaluation of exhaled breath profiles by electronic nose (eNose) is considered as a promising non-invasive diagnostic tool, and the discrimination of breathprints between patients with COPD and asthma has been reported. The aim of this study was to assess, whether exhaled breath profile analysis can detect the inflammatory airway response induced by ozone inhalation. Methods: In a randomized double-blind, cross-over study 14 healthy ozone-responsive subjects were exposed to 250 ppb ozone and filtered room air for 3 h with intermittent exercise. Blood biomarkers, exhaled NO, exhaled CO, and breathprints (Cyranose 320 (R)) were assessed prior and at 3 time points up to 24 h post exposure. Induced sputum was collected at baseline and 3 h post exposure. Multivariate analysis of eNose data was performed using transformed and normalized datasets. Results: Significantly increased numbers of sputum and blood neutrophils were observed after ozone, whereas the eNose signals showed no differences between exposures and no correlation with neutrophilic airway inflammation. However, independent of ozone exposure, sensor data correlated with serum SP-D levels and to a smaller extent with blood neutrophil numbers. Conclusions: Exhaled breath profiles as measured by the Cyranose 320 (R) did not reflect airway responses to ozone. This suggests that exhaled volatiles did not change with ozone challenges or that the changes were below the detection limits. Conversely, the correlation of eNose signals with blood neutrophils and serum SP-D, i.e. markers of systemic inflammation and lung permeability, suggested that the Cyranose 320 (R) can detect volatile organic compounds of systemic origin. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据