4.7 Article

Numerical simulation of a submerged cylindrical wave energy converter

期刊

RENEWABLE ENERGY
卷 64, 期 -, 页码 132-143

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2013.11.008

关键词

Wave energy converter; Wave-body interactions; Submerged cylinder; Bristol cylinder

向作者/读者索取更多资源

In this study, a numerical model based on the complete solution of the Navier Stokes equations is proposed to predict the behavior of the submerged circular cylinder wave energy converter (WEC) subjected to highly nonlinear incident waves. The solution is obtained using a control volume approach in conjunction with the fast-fictitious-domain-method for treating the solid objects. To validate the model, the numerical results are compared with the available analytical and experimental data in various scenarios where good agreements are observed. First, the free vibrations of a solid object in different non-dimensional damping ratios and the free decay of a heaving circular cylinder on the free surface of a still water are simulated. Next, the wave energy absorption efficiency of a circular cylinder WEC calculated from the model is compared with that of the available experiments in similar conditions. The results show that tuning the converter based on the linear theory is not satisfactory when subjected to steep incident waves while the numerical wave tank (NWT) developed in the current study can be effectively employed in order to tune the converter in such conditions. The current NWT is able to predict the wave-body interactions as long as the turbulence phenomena are not important which covers a wide range of Reynolds and Keulegan-Carpenter numbers. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据