4.7 Article

Magnetic-separable robust microbeads using a branched polymer for stable enzyme immobilization

期刊

REACTIVE & FUNCTIONAL POLYMERS
卷 73, 期 1, 页码 39-45

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.reactfunctpolym.2012.10.001

关键词

Enzyme conjugation; Micro-hydrogel; Branched polymers; Magnetic separability

资金

  1. National Research Foundation of Korea Grant
  2. Korean Government (MEST) [NRFC1ABA001-2010-0020501]
  3. National Research Foundation of Korea Grant from the Korean Government [NRF-2010-220-D00019]

向作者/读者索取更多资源

Uniform magnetic separable robust microbeads using a branched polymer were successfully developed for stable enzyme immobilization. The changed morphology of the microbeads was shown by scanning electron microscopy (SEM) analysis. The aldehyde groups on the polymers and imine groups derived from the Schiff base reaction between the aldehyde and amine moiety were found as the evidence of these reactions based on Fourier transform infrared (FT-IR) spectroscopy. The amine groups of the enzyme react with the aldehyde groups on the glutaraldehyde polymer so that the stable conjugations are formed. The specific activity of the conjugated enzyme was found to be retained more than 50%, but the reaction rate constant, K-m value was not changed, compared to the free enzyme. In addition, the enzyme conjugated in the microbeads was found to be highly stable for more than 50 days, pertaining over 60% of its initial activity, even after being reused more than 15 times repeatedly. Furthermore, the magnetic-driven controllability provided facile separable characters for the repeated recycling. It is expected that these microbeads can be utilized as a key tool for successful realization not only in enzymatic conversion processes but also in extended fields; bio-based sensors or analytical devices, bioprocessing, bioremediation, to name only a few of numerous areas. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据