4.7 Article

Lutein derived fragments exhibit higher antioxidant and anti-inflammatory properties than lutein in lipopolysaccharide induced inflammation in rats

期刊

FOOD & FUNCTION
卷 6, 期 2, 页码 450-460

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4fo00606b

关键词

-

资金

  1. Council of Scientific and Industrial Research, New Delhi, India [9/1/BS/CFTRI(4)/2012-13-PPD, BSC 0404]
  2. University Grants Commission, Government of India, New Delhi, India

向作者/读者索取更多资源

In the present study, we appraise the anti-inflammatory efficacy of lutein oxidative degradation derivatives mediated through UV-irradiation over lutein in counteracting the inflammation induced by lipopolysaccharide (LPS) in rats (n = 5 per group). UV-irradiated lutein fragments were identified as anhydrolutein (B, C40H54O), 2,6,6-trimethylcyclohexa-1,4-dienylium (M1, C9H13), (2E,4E,6E,8E)-9-(4-hydroxy-2,6,6-trimethylcyclohex- 1-len-1-yl)-3,7-dimethylnona-2,4,6,8-tetraen-1-ylium (M2, C20H29O), 4-[(1E,3E,5E,7E)-3,7,-dimethyldeca-1,3,5,7-tetraen-1-yl]-3,5,5-methylcyclohex-3-en-1-ol (M3, C21H30O) and zeaxanthin (M4, C40H56O) and its isomers as 13'-Z zeaxanthin, 13'-Z lutein, all-trans zeaxanthin, and 9-Z lutein. Induction of inflammation by LPS significantly increased the production of nitrites (3.3 fold in the serum and 2.6 fold in the liver), prostaglandin E-2 (26 fold in the serum), and pro-inflammatory cytokines like tumor necrosis factor-alpha (6.6 fold in the serum), and interleukin-6 (4.8 fold in the serum). Oxidative derivatives of lutein, especially M1, M2 and M3, ameliorated acute inflammation in rats by inhibiting the production of nitrites, malondialdehyde (MDA), PGE(2), TNF-alpha, and IL-6 cytokines more efficiently than lutein in rats. The anti-inflammatory mechanism of derivatives might be related to the decrease of inflammatory cytokines and the increase of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S transferase, glutathione reductase), which would result in the reduction of iNOS, COX-2 and MDA and subsequently inflammatory responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nutrition & Dietetics

Lutein attenuates oxidative stress markers and ameliorates glucose homeostasis through polyol pathway in heart and kidney of STZ-induced hyperglycemic rat model

Gurunathan Sharavana, G. S. Joseph, Vallikannan Baskaran

EUROPEAN JOURNAL OF NUTRITION (2017)

Article Biochemistry & Molecular Biology

Lactucaxanthin - a potential anti- diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats

Sowmya Shree Gopal, Magisetty Jhansi Lakshmi, Gurunathan Sharavana, Gunaseelan Sathaiah, Yadahally N. Sreerama, Vallikannan Baskaran

FOOD & FUNCTION (2017)

Article Genetics & Heredity

A homozygous CAP2 pathogenic variant in a neonate presenting with rapidly progressive cardiomyopathy and nemaline rods

Sharavana Gurunathan, Jessica Sebastian, Jennifer Baker, Hoda Z. Abdel-Hamid, Shawn C. West, Brian Feingold, Vivek Peche, Miguel Reyes-Mugica, Suneeta Madan-Khetarpal, Jeffrey Field

Summary: This case report presents a patient with Nemaline Myopathy associated with a pathogenic variant in the CAP2 gene, leading to severe heart and muscle abnormalities including nemaline rods identified in heart tissue.

AMERICAN JOURNAL OF MEDICAL GENETICS PART A (2022)

Article Biochemistry & Molecular Biology

Gastrointestinal tolerance of D-allulose in children: an acute, randomised, double-blind, placebo-controlled, cross-over study

Davide Risso, Gillian Dunngalvin, Sameer Saxena, Andrea Doolan, Lisa Spence, Kavita Karnik

Summary: This study investigated the gastrointestinal tolerance of low-calorie sugar D-allulose in young children and found that it was well tolerated. It can be considered as a candidate for replacing added sugars with lower caloric content in commercially produced goods.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

Effect of shape, gluten, and mastication effort on in vitro starch digestion and the predicted glycemic index of pasta

Xinying Suo, Anna Baggio, Nicoletta Pellegrini, Silvia Vincenzetti, Elena Vittadini

Summary: This study investigated the effects of shape, gluten, and structural breakdown on the starch digestibility and glycemic index of gluten-containing and gluten-free pasta. The results showed that mastication effort, shape, and gluten content had significant impacts on starch digestion and glycemic index, with gluten being the major factor affecting the amount of digested starch.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

The targeted development of collagen-active peptides based on composite enzyme hydrolysis: a study on the structure-activity relationship

Xinnuo Hu, Yanjun Yang, Cuihua Chang, Junhua Li, Yujie Su, Luping Gu

Summary: Fish collagen was enzymatically hydrolyzed using alkaline, papain, and ginger protease. The addition of ginger protease increased the degree of hydrolysis and resulted in changes in the amino acid composition and molecular weight distribution of the peptides. Combined hydrolysis with ginger protease improved the ACE inhibitory activity of the sample but affected fibroblast proliferation activity.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

The promotion of fatty acid β-oxidation by hesperidin via activating SIRT1/PGC1α to improve NAFLD induced by a high-fat diet

Tong Nie, Xin Wang, Aqun Li, Anshan Shan, Jun Ma

Summary: This study investigated the mechanism by which hesperidin prevents nonalcoholic fatty liver disease (NAFLD) by modulating fatty acid beta oxidation. The results suggest that hesperidin promotes fatty acid beta oxidation by activating SIRT1/PGC1 alpha, thus improving NAFLD.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

The arsenic-lowering effect of inulin-type prebiotics in end-stage renal disease: a randomized crossover trial

Li Li, Jing Zhao, Jinxue Wang, Qianqian Xiong, Xuechun Lin, Xiaolei Guo, Fan Peng, Wangqun Liang, Xuezhi Zuo, Chenjiang Ying

Summary: The daily administration of 10 g d-1 inulin-type fructans significantly reduced the circulating arsenic retention in end-stage renal disease by increasing the arsenic clearance rate through urine and dialysis. However, it was found to be ineffective for other trace elements.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

A synbiotic formulation of Lactobacillus reuteri and inulin alleviates ASD-like behaviors in a mouse model: the mediating role of the gut-brain axis

Chuanchuan Wang, Weixuan Chen, Yishan Jiang, Xiao Xiao, Qianhui Zou, Jiarui Liang, Yu Zhao, Qianxu Wang, Tian Yuan, Rui Guo, Xuebo Liu, Zhigang Liu

Summary: Autism Spectrum Disorder (ASD) symptoms may be improved through modulation of gut microbiota. This study investigated the effects of a synbiotic treatment on an ASD-like mouse model, and found that it rectified social impairments, attenuated inflammatory cytokine expressions, protected gut barrier integrity, and altered gut microbiota composition. The synbiotic treatment elevated beneficial metabolites and upregulated genes associated with their synthesis. Overall, the synbiotic combination mitigated ASD-related social impairments through regulation of the gut-brain axis.

FOOD & FUNCTION (2024)

Review Biochemistry & Molecular Biology

Non-starch polysaccharides from kidney beans: comprehensive insight into their extraction, structure and physicochemical and nutritional properties

Chunli Kong, Caiping Duan, Yixuan Zhang, Yiying Wang, Zheng Yan, Sumei Zhou

Summary: This review critically discusses the physicochemical properties of bioactive molecules in kidney beans and focuses on the current knowledge of non-starch polysaccharide (NSP) structure and function on intestinal health and metabolism. It also provides suggestions for further investigation and development of NSPs as novel plant carbohydrate resources.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

Ligilactobacillus acidipiscis YJ5 modulates the gut microbiota and produces beneficial metabolites to relieve constipation by enhancing the mucosal barrier

Fei Shen, Qianqian Wang, Sami Ullah, Ya Pan, Minjie Zhao, Jing Wang, Ming Chen, Fengqin Feng, Hao Zhong

Summary: This study investigated the peristalsis-promoting potential of Ligilactobacillus acidipiscis YJ5 and its underlying molecular mechanism in relieving constipation. The results showed that L. acidipiscis YJ5 intervention increased intestinal peristalsis in zebrafish and mouse models, reduced colonic aquaporin expression, repaired intestinal morphological damage, enhanced the colonic mucosal barrier, and reversed the gut microbiota structure. The positive effects of L. acidipiscis YJ5 were attributed to its metabolites such as malic acid and heliangin.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

Diallyl trisulfide inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer via modulating gut microbiota and the PPARγ/NF-κB pathway

Zhuo Qu, Jiahui Tian, Jiachen Sun, Ying Shi, Jianqiang Yu, Wannian Zhang, Chunlin Zhuang

Summary: Smoking is the main risk factor for lung cancer, but garlic oil compound DATS shows potential as a chemopreventive agent. DATS can inhibit the carcinogenic effects of tobacco and regulate gut microbiota, as well as activate the PPAR-gamma pathway to suppress tumor growth.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

Insoluble/soluble fraction ratio determines effects of dietary fiber on gut microbiota and serum metabolites in healthy mice

Yanli Zhang, Jielun Hu, Yadong Zhong, Shuai Liu, Liandi Liu, Xinyi Mu, Chunhua Chen, Shenji Yang, Guohao Li, Duoduo Zhang, Xinru Huang, Jinrui Yang, Xiaojun Huang, Shuigen Bian, Shaoping Nie

Summary: The study found that different ratios of insoluble and soluble dietary fiber have distinct effects on gut microbiota and serum metabolites. Increasing the ratio of insoluble dietary fiber increases the relative abundance and acid production of specific bacterial genera, while increasing the ratio of soluble dietary fiber increases the diversity and relative abundance of other bacterial genera and regulates metabolic pathways.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

Isoquercitrin alleviates lipopolysaccharide-induced intestinal mucosal barrier damage in mice by regulating TLR4/MyD88/NF-κB signaling pathway and intestinal flora

Enhui Tang, Tong Hu, Zhaokang Jiang, Xiaojun Shen, Huan Lin, Haiyan Xian, Xinlan Wu

Summary: Isoquercitrin alleviates lipopolysaccharide-induced intestinal mucosal barrier damage in mice by inhibiting the TLR4/MyD88/NF-kappa B signaling pathway and modulating the intestinal flora.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

Betanin protects against bleomycin-induced pulmonary fibrosis by regulating the NLRP3/IL-1β/TGF-β1 pathway-mediated epithelial-to-mesenchymal transition

Nesma A. Abd Elrazik, Sahar A. Helmy

Summary: This study found that betanin, the major pigment in red beetroot, has a protective effect against bleomycin-induced pulmonary fibrosis in rats. The protective effect may be attributed to the attenuation of the NLRP3/IL-1 beta/TGF-beta 1 signaling pathway and the suppression of the EMT process.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

Preparation of a novel expandable konjac fiber at different freezing temperatures and exploration of its digestion regulation functions

Sha Li, Longchen Shang, Yuanyuan Chen, Rong Song, Jing Li, Bin Li

Summary: A new form of konjac fiber was prepared that could instantly expand in contact with digestive fluid, inhibiting the digestion of food. The digestion regulation ability of the fiber was influenced by the freezing temperature used during preparation, with the fiber prepared at -20 degrees C showing the best performance in delaying gastric emptying and preventing intestinal starch hydrolysis.

FOOD & FUNCTION (2024)

Article Biochemistry & Molecular Biology

Effects of unfolding treatment assisted glycation on the IgE/IgG binding capacity and antioxidant activity of ovomucoid

Xian Xia, Jiangdong Li, Rui Liang, Yi Li, Xiaojuan Ma, Ying Yang, Daniel Lozano-Ojalvo

Summary: This study aimed to reduce the allergenicity of ovomucoid through unfolding-assisted glycation. The results showed that maltose glycation effectively reduced the IgG-binding capacity of the allergen. Unfolded and glycated ovomucoid exhibited enhanced antioxidant activity and metal ion chelating ability.

FOOD & FUNCTION (2024)