4.4 Article

Leukemogenesis in Heterozygous PU.1 Knockout Mice

期刊

RADIATION RESEARCH
卷 182, 期 3, 页码 310-315

出版社

RADIATION RESEARCH SOC
DOI: 10.1667/RR13738.1

关键词

-

资金

  1. National Aeronautics and Space Administration entitled NASA Specialized Center of Research on Radiation Carcinogenesis'' [NNX09AM08G]

向作者/读者索取更多资源

Most murine radiation-induced acute myeloid leukemias involve biallelic inactivation of the PU.1 gene, with one allele being lost through a radiation-induced chromosomal deletion and the other allele affected by a recurrent point mutation in codon 235 that is likely to be spontaneous. The short latencies of acute myeloid leukemias occurring in nonirradiated mice engineered with PU.1 conditional knockout or knockdown alleles suggest that once both copies of PU.1 have been lost any other steps involved in leukemogenesis occur rapidly. Yet, spontaneous acute myeloid leukemias have not been reported in mice heterozygous for a PU.1 knockout allele, an observation that conflicts with the understanding that the PU.1 codon 235 mutation is spontaneous. Here we describe experiments that show that the lack of spontaneous leukemia in PU.1 heterozygous knockout mice is not due to insufficient monitoring times or mouse numbers or the genetic background of the knockout mice. The results reveal that spontaneous leukemias that develop in mice of the mixed 129S2/SvPas and C57BL/6 background of knockout mice arise by a pathway that does not involve biallelic PU.1 mutation. In addition, the latency of radiation-induced leukemia in PU.1 heterozygous mice on a genetic background susceptible to radiation-induced leukemia indicates that the codon 235 mutation is not a rate-limiting step in radiation leukemogenesis driven by PU.1 loss. (C) 2014 by Radiation Research Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据