4.6 Article

Common microfronts and other solitary events in the nocturnal boundary layer

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/qj.694

关键词

mesoscale; stable boundary layer; solitary waves; FLOSS

资金

  1. NSF [ATM-0607842]
  2. ARO [W911FN05C0067]

向作者/读者索取更多资源

Microfronts with abrupt changes of temperature and/or wind vector are found to be common for weak winds and thin stable boundary layers. In this study, microfronts and their parent structures on time-scales of minutes or tens of minutes are sampled from fast-response tower measurements of temperature and the three velocity components during FLOSSII. Cold microfronts are generally characterized by rising motion, followed by stronger stratification and weaker turbulence. Sinking warm air prior to the cold microfront, followed by rising cold air after the microfront passage, corresponds to conversion of kinetic energy to potential energy. This conversion requires a source of external energy for maintenance of the circulation. The shallow cold microfronts appear to be often related to deeper fast-moving disturbances in the horizontal velocity field. Warm microfronts generally lead to stronger wind and turbulence after the microfront passage. Gust microfronts induce rising motion in advance of the microfront. Solitary waves cause little net change of temperature and are systematically embedded within larger-scale deeper disturbances at this site. The sensitivity of the results to the sampling window width and sampling criteria is examined. Copyright (C) 2010 Royal Meteorological Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据