4.5 Article

An Evaluation of Psychophysical Models of Auditory Change Perception

期刊

PSYCHOLOGICAL REVIEW
卷 115, 期 4, 页码 1069-1083

出版社

AMER PSYCHOLOGICAL ASSOC
DOI: 10.1037/a0013572

关键词

signal detection theory; threshold; discrimination; change perception; auditory perception

资金

  1. National Institutes of Health, National Institute on Deafness and other Communication Disorders [R01 DC 05216]

向作者/读者索取更多资源

In many psychophysical experiments, the participant's task is to detect small changes along a given stimulus dimension or to identify the direction (e.g., upward vs. downward) of such changes. The results of these experiments are traditionally analyzed with a constant-variance Gaussian (CVG) model or a high-threshold (HT) model. Here, the authors demonstrate that for changes along three basic sound dimensions (frequency, intensity, and amplitude-modulation rate), such models cannot account for the observed relationship between detection thresholds and direction-identification thresholds. It is shown that two alternative models can account for this relationship. One of them is based on the idea of sensory quanta; the other assumes that small changes are detected on the basis of Poisson processes with low means. The predictions of these two models are then compared against receiver operating characteristics (ROCs) for the detection of changes in sound intensity. It is concluded that human listeners' perception of small and unidimensional acoustic changes is better described by a discrete-state Poisson model than by the more commonly used CVG model or by the less favored HT and quantum models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据