4.4 Article

The root microtubule cytoskeleton and cell cycle analysis through desiccation of Brassica napus seedlings

期刊

PROTOPLASMA
卷 233, 期 3-4, 页码 177-185

出版社

SPRINGER WIEN
DOI: 10.1007/s00709-008-0001-z

关键词

Rape; Canola; Confocal microscopy; Cytoskeleton; Desiccation tolerance; DNA integrity; Microtubules; TTC viability test

向作者/读者索取更多资源

Desiccation tolerance (DT) of orthodox seeds is reduced upon their germination. The main aim of this study was to estimate the range of rape seedling DT by examining the consequences of desiccation on the distribution, stability and orientation of microtubules in diverse cells. Using different parameters, such as relative water content (RWC), the tetrazolium viability test and electrolyte leakage, it has been demonstrated that a small percentage decrease in relative humidity can cause irreparable changes in membrane permeability, as well as in nuclear structure and microtubule cytoskeleton stability. Seedling root tips survived when exposed to low desiccation stress intensity, but small changes in microtubule behavior were observed. Cortical microtubules formed thick arrays, especially near the plasma membrane. Water loss also resulted in a reduction of the mitotic activity. More rapid desiccation caused microtubule depolymerization. Occasionally, abnormal tubulin aggregates were visible. Cell divisions were not detectable under these conditions. Due to the observable microtubule defects, the hypersensitivity of the microtubule cytoskeleton might be a useful and simple parameter for estimating environmental stress intensity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据