4.1 Article

Gaussian process regression model for normalization of LC-MS data using scan-level information

期刊

PROTEOME SCIENCE
卷 11, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1477-5956-11-S1-S13

关键词

-

资金

  1. National Institutes of Health [R01CA143420]
  2. Proteomics and Metabolomics Shared Resource at the Lombardi Comprehensive Cancer Center

向作者/读者索取更多资源

Background: Differences in sample collection, biomolecule extraction, and instrument variability introduce bias to data generated by liquid chromatography coupled with mass spectrometry (LC-MS). Normalization is used to address these issues. In this paper, we introduce a new normalization method using the Gaussian process regression model (GPRM) that utilizes information from individual scans within an extracted ion chromatogram (EIC) of a peak. The proposed method is particularly applicable for normalization based on analysis order of LC-MS runs. Our method uses measurement variabilities estimated through LC-MS data acquired from quality control samples to correct for bias caused by instrument drift. Maximum likelihood approach is used to find the optimal parameters for the fitted GPRM. We review several normalization methods and compare their performance with GPRM. Results: To evaluate the performance of different normalization methods, we consider LC-MS data from a study where metabolomic approach is utilized to discover biomarkers for liver cancer. The LC-MS data were acquired by analysis of sera from liver cancer patients and cirrhotic controls. In addition, LC-MS runs from a quality control (QC) sample are included to assess the run to run variability and to evaluate the ability of various normalization method in reducing this undesired variability. Also, ANOVA models are applied to the normalized LC-MS data to identify ions with intensity measurements that are significantly different between cases and controls. Conclusions: One of the challenges in using label-free LC-MS for quantitation of biomolecules is systematic bias in measurements. Several normalization methods have been introduced to overcome this issue, but there is no universally applicable approach at the present time. Each data set should be carefully examined to determine the most appropriate normalization method. We review here several existing methods and introduce the GPRM for normalization of LC-MS data. Through our in-house data set, we show that the GPRM outperforms other normalization methods considered here, in terms of decreasing the variability of ion intensities among quality control runs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据