4.3 Article

Comparative modeling and protein-like features of hydrophobic-polar models on a two-dimensional lattice

期刊

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
卷 80, 期 6, 页码 1683-1693

出版社

WILEY
DOI: 10.1002/prot.24067

关键词

lattice models; self-avoiding walk; residue composition; hydrophobicity; protein like; protein universe

资金

  1. National Science Foundation [CNS-0619926]
  2. Stanford Bio-X fellowship
  3. National Institutes of Health [GM041455]

向作者/读者索取更多资源

Lattice models of proteins have been extensively used to study protein thermodynamics, folding dynamics, and evolution. Our study considers two different hydrophobicpolar (HP) models on the 2D square lattice: the purely HP model and a model where a compactness-favoring term is added. We exhaustively enumerate all the possible structures in our models and perform the study of their corresponding folds, HP arrangements in space and shapes. The two models considered differ greatly in their numbers of structures, folds, arrangements, and shapes. Despite their differences, both lattice models have distinctive protein-like features: (1) Shapes are compact in both models, especially when a compactness-favoring energy term is added. (2) The residue composition is independent of the chain length and is very close to 50% hydrophobic in both models, as we observe in real proteins. (3) Comparative modeling works well in both models, particularly in the more compact one. The fact that our models show protein-like features suggests that lattice models incorporate the fundamental physical principles of proteins. Our study supports the use of lattice models to study questions about proteins that require exactness and extensive calculations, such as protein design and evolution, which are often too complex and computationally demanding to be addressed with more detailed models. Proteins 2012; (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据