4.3 Article

Computed structures of point deletion mutants and their enzymatic activities

期刊

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
卷 79, 期 10, 页码 2844-2860

出版社

WILEY
DOI: 10.1002/prot.23109

关键词

prediction algorithm; enzyme activity; loop modeling; backbone relaxation

资金

  1. Ruth Kirschstein Graduate Research Fellowship [GM081901]

向作者/读者索取更多资源

Point deletions in enzymes can vary in effect from negligible to complete loss of activity; however, these effects are not generally predictable. Deletions are widely observed in nature and often result in diseases such as cancer, cystic fibrosis, or osteogenesis imperfecta. Here, we have developed an algorithm to model the perturbed structures of deletion mutants with the ultimate goal of predicting their activities. The algorithm works by deleting the specified residue from the wild-type structure, creating a gap that is closed using a combination of local and global moves that change the backbone torsion angles of the protein structure. On a set of five proteins for which both wild-type and deletion mutant x-ray crystal structures are available, the algorithm produces deep, narrow energy funnels within 1.5 angstrom of the crystal structure for the deletion mutants. To assess the ability of our algorithm to predict activity from the predicted structures, we tested the correlation of experimental activity with several measures of the predicted structure ensemble using a set of 45 point deletions from ricin. Estimates incorporating likely prevalence of active and inactive deletion sites suggest that activity can be predicted correctly over 60% of the time from the active site root-mean squared deviation of the lowest energy predicted structures. The predictions are stronger than simple sequence organization measures, but more fundamental work is required in structure prediction and enzyme activity determination to allow consistent prediction of activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据