4.3 Article

Correlated mutation analyses on super-family alignments reveal functionally important residues

期刊

出版社

WILEY
DOI: 10.1002/prot.22374

关键词

comulator; 3DM; protein engineering; rational design; hexo-kinases; isocitrate-lyase/phosphoenolpyruvate lyases; cupins; FAD-oxidases

资金

  1. Netherlands Bioinforniatics Centre (NBIC)

向作者/读者索取更多资源

Correlated mutation analyses (CMA) on multiple sequence alignments are widely used for the prediction of the function of amino acids. The accuracy of CMA-based predictions is mainly determined by the number of sequences, by their evolutionary distances, and by the quality of the alignments. These criteria are best met in structure-based sequence alignments of large super-families. So far, CMA-techniques have mainly been employed to study the receptor interactions. The present work shows how a novel CMA tool, called Comulator, can be used to determine networks of functionally related residues in enzymes. These analyses provide leads for protein engineering studies that are directed towards modification of enzyme specificity or activity. As proof of concept, Comulator has been applied to four enzyme super-families: the isocitrate lyase/phoshoenol-pyruvate mutase superfamily, the hexokinase super-family, the RmIC-like cupin super-family, and the FAD-linked oxidases super-family. In each of those cases networks of functionally related residue positions were discovered that upon mutation influenced enzyme specificity and/or activity as predicted. We conclude that CMA is a powerful tool for redesigning enzyme activity and selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据