4.6 Article

The EF-hand domain:: A globally cooperative structural unit

期刊

PROTEIN SCIENCE
卷 11, 期 2, 页码 198-205

出版社

COLD SPRING HARBOR LAB PRESS
DOI: 10.1110/ps.33302

关键词

calcium-binding protein; conformational change; EF-hand; mutagenesis; NMR spectroscopy; protein engineering

资金

  1. NIGMS NIH HHS [GM 40120, R01 GM040120] Funding Source: Medline

向作者/读者索取更多资源

EF-hand Ca2+-binding proteins participate in both modulation of Ca2+ signals and direct transduction of the ionic signal into downstream biochemical events. The range of biochemical. functions of these proteins is correlated with differences in the way in which they respond to the binding of Ca2+. The EF-hand domains of calbindin D-9k and calmodulin are homologous, yet they respond to the binding of calcium ions in a drastically different manner. A series of comparative analyses of their structures enabled the development of hypotheses about which residues in these proteins control the calcium-induced changes in conformation. To test our understanding of the relationship between protein sequence and structure, we specifically designed the F36G mutation of the EF-hand protein calbindin D-9k to alter the packing of helices I and II in the apoprotein. The three-dimensional structure of apo F36G was determined in solution by nuclear magnetic resonance spectroscopy and showed that the design was successful. Surprisingly, significant structural perturbations also were found to extend far from the site of mutation. The observation of such long-range effects provides clear evidence that four-helix EF-hand domains should be treated as a single globally cooperative unit. A hypothetical mechanism for how the long-range effects are transmitted is described. Our results support the concept of energetic and structural coupling of the key residues that are crucial for a protein's fold and function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据