4.1 Article

Site-directed mutagenesis of the hinge peptide from the hemagglutinin protein: enhancement of the pH-responsive conformational change

期刊

PROTEIN ENGINEERING DESIGN & SELECTION
卷 21, 期 6, 页码 395-404

出版社

OXFORD UNIV PRESS
DOI: 10.1093/protein/gzn018

关键词

circular dichroism; conformational change; hemagglutinin; site-directed mutagenesis; stimulus-responsive

向作者/读者索取更多资源

Environmentally responsive proteins and peptides are increasingly finding utility in various engineered systems due to their ability to respond to the presentation of external stimuli. A classic example of this behavior is the influenza hemagglutinin (HA) fusion protein. At neutral pH, HA exists in a non-fusogenic state, but upon exposure to low pH, the conformation of the structure changes to expose a fusogenic peptide. During this structural change, massive rearrangements occur in a subunit of HA (HA2). Crystallography data has shown that a loop of 28 amino acids (residues 54-81) undergoes a dramatic transition from a random coil to an alpha-helix. This segment connects to two flanking helical regions (short and long) to form a long, continuous helix. Here, we report the results of site-directed mutagenesis study on LOOP-36 to further understand the mechanism of this important stimulus-responsive peptide. The conformational transition of a bacterially expressed LOOP-36 was found to be less dramatic than has been previously reported. The systematic mutation of glutamate and histidine residues in the peptide to glutamines (glutamine scanning) did not impact the conformational behavior of the peptide, but the substitution of the glycine residue at position 22 with alanine resulted in significant pH-responsive behavior. Therefore this mutant stimulus-responsive peptide may be more valuable for future protein engineering and bionanotechnology efforts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据