4.1 Article

An improved prediction of catalytic residues in enzyme structures

期刊

PROTEIN ENGINEERING DESIGN & SELECTION
卷 21, 期 5, 页码 295-302

出版社

OXFORD UNIV PRESS
DOI: 10.1093/protein/gzn003

关键词

catalytic residues; closeness centrality; genetic algorithm; neural network; prediction

向作者/读者索取更多资源

The protein databases contain a huge number of function unknown proteins, including many proteins with newly determined 3D structures resulted from the Structural Genomics Projects. To accelerate experiment-based assignment of function, de novo prediction of protein functional sites, like active sites in enzymes, becomes increasingly important. Here, we attempted to improve the prediction of catalytic residues in enzyme structures by seeking and refining different encodings (i.e. residue properties) as well as employing new machine learning algorithms. In particular, considering that catalytic residues can often reveal specific network centrality when representing enzyme structure as a residue contact network, the corresponding measurement (i.e. closeness centrality) was used as one of the most important encodings in our new predictor. Meanwhile, a genetic algorithm integrated neural network (GANN) was also employed. Thanks to the above strategies, our GANN predictor demonstrated a high accuracy of 91.2% in the prediction of catalytic residues based on balanced datasets (i.e. the 1: 1 ratio of catalytic to non-catalytic residues). When the GANN method was optimally applied to real enzyme structures, 73.9% of the tested structures had the active site correctly located. Compared with two existing methods, the proposed GANN method also demonstrated a better performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据