4.8 Review

Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites

期刊

PROGRESS IN POLYMER SCIENCE
卷 38, 期 8, 页码 1163-1231

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progpolymsci.2013.04.001

关键词

Inorganic fullerene-like (IF) nanoparticles; Polymer nanocomposites; Thermal mechanical and tribological properties

资金

  1. Ministeno de Economia y Competitividad (MINECO)
  2. CSIC
  3. European Union [NMP3-CT-2005-515840]
  4. Spanish Ministry of Science Innovation [MAT-2010-21070-C02-01]
  5. CSIC [201160E003]
  6. European Commission for the X-ray synchrotron experiments performed at the Soft Condensed Matter A2 beamline at HASYLAB (DESY-Hamburg, Germany)

向作者/读者索取更多资源

Polymer/inorganic nanoparticle nanocomposites have garnered considerable academic and industrial interest over recent decades in the development of advanced materials for a wide range of applications. In this respect, the dispersion of so-called inorganic fullerene-like (IF) nanoparticles, e.g., tungsten disulfide (IF-WS2) or molybdenum disulfide (IF-MoS2), into polymeric matrices is emerging as a new strategy. The surprising properties of these layered metal dichalcogenides such as high impact resistance and superior tribological behavior, attributed to their nanoscale size and hollow quasi-spherical shape, open up a wide variety of opportunities for applications of these inorganic compounds. The present work presents a detailed overview on research in the area of IF-based polymer nanocomposites, with special emphasis on the use of IF-WS2 nanoparticles as environmentally friendly reinforcing fillers. The incorporation of IF particles has been shown to be efficient for improving thermal, mechanical and tribological properties of various thermoplastic polymers, such as polypropylene, nylon-6, poly(phenylene sulfide), poly(ether ether ketone), where nanocomposites were fabricated by simple melt-processing routes without the need for modifiers or surfactants. This new family of nanocomposites exhibits similar or enhanced performance when compared with nanocomposites that incorporate carbon nanotubes, carbon nanofibers or nanoclays, but are substantially more cost-effective, efficient and environmentally satisfactory. Most recently, innovative approaches have been described that exploit synergistic effects to produce new materials with enhanced properties, including the combined use of micro- and nanoparticles such as IF-WS2/nucleating agent or IF-WS2/carbon fiber, as well as dual nanoparticle systems such as SWCNT/IF-WS2 where each nanoparticle has different characteristics. The structure-property relationships of these nanocomposites are discussed and potential applications proposed ranging from medicine to the aerospace, automotive and electronics industries. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据