4.6 Article

Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks

期刊

PROGRESS IN NUCLEAR ENERGY
卷 52, 期 6, 页码 555-562

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pnucene.2010.02.001

关键词

NaI detector; Monte Carlo simulation; Volume fraction; Artificial neural network; Gamma-ray

资金

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  2. Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)

向作者/读者索取更多资源

This work presents a new methodology for flow regimes identification and volume fraction predictions in water gas oil multiphase systems. The approach is based on gamma-ray pulse height distributions (PHDs) pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned in order measure transmitted and scattered beams, which makes it less dependent on the regime flow. The PHDs are directly used by the ANNs without any parameterization of the measured signal. The system comprises four ANNs. The first identifies the flow regime and the other three ANNs are specialized in volume fraction predictions for each specific regime. The ideal and static theoretical models for annular, stratified and homogeneous regimes have been developed using MCNP-X mathematical code, which was used to provide training, test and validation data for the ANNs. The energy resolution of NaI(Tl) detectors is also considered on the mathematical model. The proposed ANNs could correctly identify all three different regimes with satisfactory prediction of the volume fraction in water gas oil multiphase system, demonstrating to be a promising approach for this purpose. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据