4.7 Article

On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction

期刊

ACTA MATERIALIA
卷 97, 期 -, 页码 367-379

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2015.06.035

关键词

EBSD; Fatigue crack formation; Geometrically necessary dislocations; Residual stress; Ni superalloy with inclusion

资金

  1. Beijing Institute of Aeronautical Materials (BIAM), AVIC, China
  2. Small Equipment Grant from EPSRC, United Kingdom [EP/KO30760/1]
  3. Rolls-Royce plc.
  4. EPSRC [EP/K030760/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/K503733/1, EP/K030760/1] Funding Source: researchfish

向作者/读者索取更多资源

A series of interrupted three-point bend low-cycle fatigue tests were carried out on a powder metallurgy FHG96 nickel superalloy sample containing non-metallic inclusions. High resolution electron backscatter diffraction (HR-EBSD) was used to characterise the distribution and evolution of geometrically necessary dislocation (GND) density, residual stress and total dislocation density near a non-metallic inclusion. A systematic study of room temperature cyclic deformation is presented in which slip localisation, cyclic hardening, ratcheting and stabilisation occur, through to crack formation and microstructurally-sensitive propagation. Particular focus is brought to bear at the inclusion matrix interface. Complex inhomogeneous deformation structures were directly observed from the first few loading cycles, and these structures were found not to vary significantly with increasing number of cycles. A clear link was observed between crack nucleation site and microstructurally-sensitive growth path and the spatially-resolved sites of extreme values of residual stress and GND density. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Environmental

Synergistic optimizing thermoelectric performance of SnTe by the integrated Multi-strategy

Xuemei Wang, Gang Wu, RuoYu Wang, Liang Xu, Haoyang Hu, Peng Sun, Xiaojian Tan, Guoqiang Liu, Jun Jiang

Summary: This study applied an integrated multistrategy, including band convergence, defect engineering, and carrier manipulation, to optimize the thermoelectric properties of SnTe. Cd-doping, Cu2Se nano-precipitate, and Sb-doping were introduced step by step to achieve the goals. The obtained compound (Sn0.86Cd0.04Sb0.1Te)0.96(Cu2Se)0.04 exhibited a high peak ZT of 1.52 at 833 K and a low thermal conductivity of 1.3 W m-1 K-1.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Materials Science, Multidisciplinary

Imparted benefits on mechanical properties by achieving grain boundary migration across voids

Wei Wang, Daniel S. Balint, Amir A. Shirzadi, Yaping Wang, Junyi Lee, Lee Aucott, Jun Jiang

Summary: Understanding the interaction between micro-voids and grain boundaries is crucial for improving the mechanical properties of safety-critical parts. By achieving grain boundary migration across voids, we demonstrate the beneficial effects on mechanical properties. The study used in-situ EBSD/FSE and crystal plasticity finite element modeling to investigate the micromechanisms and quantitative analysis of grain boundary migration on local deformation.

ACTA MATERIALIA (2023)

Article Chemistry, Multidisciplinary

High-Performance Industrial-Grade p-Type (Bi,Sb)2Te3 Thermoelectric Enabled by a Stepwise Optimization Strategy

Qiang Zhang, Minhui Yuan, Kaikai Pang, Yuyou Zhang, Ruoyu Wang, Xiaojian Tan, Gang Wu, Haoyang Hu, Jiehua Wu, Peng Sun, Guo-Qiang Liu, Jun Jiang

Summary: In this study, an effective method was reported to improve the low thermoelectric efficiency of p-type (Bi,Sb)2Te3 by incorporating Ag8GeTe6 and Se. The addition of Ag and Ge atoms optimized the carrier concentration and effective mass, while the Sb-rich nanoprecipitates formed coherent interfaces with little loss of carrier mobility. The subsequent Se doping introduced multiple phonon scattering sources and significantly suppressed the lattice thermal conductivity. The optimized sample achieved a high peak ZT of 1.53 at 350 K and a remarkable average ZT of 1.31 (300-500 K), with an extraordinary conversion efficiency of 6.3% at Delta T = 245 K for the constructed TE module.

ADVANCED MATERIALS (2023)

Article Engineering, Industrial

On enhancement of fracture resistance of adhesive joints by surface micropatterning using a femtosecond laser

Fengzhen Sun, Pavel Penchev, Catalin I. Pruncu, Junjie Wang, Chris Pargeter, Yaping Wang, Chang Li, Stefan Dimov, Jun Jiang, Bamber R. K. Blackman

Summary: This study investigates the influence of surface micropatterns on the fracture behavior of adhesively bonded interfaces. Results show that laser patterning can enhance the fracture resistance by modifying surface roughness, wettability, and chemistry. The uniformity of patterning across the surfaces and the effective patterning ratio are found to be crucial factors. Local plastic deformation in the adhesive at the patterned structures is identified as one toughening mechanism.

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY (2023)

Article Chemistry, Physical

Design of Bi2Te3-based thermoelectric generator in a widely applicable system

Longbing Yi, Haowei Xu, Haibing Yang, Shaolin Huang, Hao Yang, Yanan Li, Qiang Zhang, Zhe Guo, Haoyang Hu, Peng Sun, Xiaojian Tan, Guoqiang Liu, Kun Song, Jun Jiang

Summary: A theoretical model was developed to analyze the Bi2Te3-based TEG system, and the results showed that increasing the height of TEG not only improves conversion efficiency but also leads to a peak value of output power. The height of the fin plays a more essential role than the thickness of the fin in optimizing the performance of TEG. By adding an electrical fan, the net output power is doubled and the net conversion efficiency is improved by more than 80%. The study also designed the structure of the TEG system for different material parameters using the theoretical method.

JOURNAL OF POWER SOURCES (2023)

Article Thermodynamics

Interfacial thermal stresses of segmented thermoelectric generators

Zipeng Yan, Longbing Yi, Haowei Xu, Shaolin Huang, Kun Song, Chunrong Pan, Jun Jiang

Summary: The mechanical performance of a segmented thermoelectric generator (TEG) is investigated using theoretical and numerical methods. The results show that the structural stress depends on the ratio of cross-sectional areas between p- and n-type TE legs, while the height ratio of different segments has a significant influence on structural stress. Thermal stress induced by unmatched thermal expansion between different segments increases rapidly with the increase of cross-sectional area and can easily exceed 20% of the total interfacial stress. The conversion efficiency and interfacial stress can be optimized by adjusting the ratio of cross-sectional areas. These findings provide a theoretical basis and guidance in the design of segmented TEGs.

JOURNAL OF THERMAL STRESSES (2023)

Article Materials Science, Multidisciplinary

Transmission Kikuchi Diffraction Mapping Induces Structural Damage in Atom Probe Specimens

Baptiste Gault, Heena Khanchandani, Thoudden Sukumar Prithiv, Stoichko Antonov, T. Ben Britton

Summary: Measuring local chemistry of specific crystallographic features by atom probe tomography (APT) is aided by transmission Kikuchi diffraction (TKD), but the potential structural damage caused by TKD is often ignored. Two case studies demonstrate damage in APT specimens from TKD mapping. The damage includes planar segregation of solutes and the formation of voids containing high concentrations of a specific element.

MICROSCOPY AND MICROANALYSIS (2023)

Article Materials Science, Multidisciplinary

Efficient and Stable Gd3Ga5O12:Cr3+ Phosphors for High-Performance NIR LEDs

Chen Jin, Ruiyang Li, Yongfu Liu, Liangliang Zhang, Jiahua Zhang, Peng Sun, Zhaohua Luo, Jun Jiang

Summary: An easy strategy is reported to improve the luminescent properties of GGG:Cr3+ phosphor by optimizing the synthesized technology. The EQE is enhanced to 43.6% and the fabricated pc-LEDs achieve a high WPE of 34.3%. These results demonstrate significant advancements in NIR phosphor materials and NIR pc-LED devices.

ADVANCED OPTICAL MATERIALS (2023)

Article Engineering, Chemical

Thermoelectric Generator Design and Characterization for Industrial Pipe Waste Heat Recovery

Di Xiao, Peng Sun, Jianlin Wu, Yin Zhang, Jiehua Wu, Guoqiang Liu, Haoyang Hu, Jun Hu, Xiaojian Tan, Shi He, Jun Jiang

Summary: Thermoelectric technology is an effective strategy to convert low-grade waste heat to electrical energy directly. However, there is limited research on thermoelectric generators (TEGs) for use in industrial pipelines. In this study, an arch bridge-shaped heat collector was proposed for the pipe to recover wasted thermal energy. The effects of key factors on generating performance were studied, and the experimental results showed the feasibility of using TEGs to recover waste heat from pipes.

PROCESSES (2023)

Article Materials Science, Ceramics

The co-optimization of efficiency and emission bandwidth in GSAGG:Cr3+NIR ceramic phosphors

Xianhui Wu, Zhaohua Luo, Yijun Zhuang, Zehua Liu, Peng Sun, Yongfu Liu, Liaolin Zhang, Haiming Qin, Jun Jiang

Summary: Researchers prepared a series of GASGG:Cr3+ ceramic phosphors by doping Sc3+ to increase the emission bandwidth while maintaining high efficiency and thermal stability. A NIR pc-LED prototype device was fabricated by combining GASGG:Cr3+ ceramic phosphor with a blue LED chip, achieving an output power of 646 mW and a photoelectric conversion efficiency of 19.2%. Finally, the application effect of this prototype device in night vision and venography was demonstrated.

CERAMICS INTERNATIONAL (2023)

Article Engineering, Environmental

High thermoelectric and mechanical performance in strong-textured n-type Bi2Te2.7Se0.3 by temperature gradient method

Gang Wu, Xiaojian Tan, Minhui Yuan, Qiang Zhang, Jacques G. Noudem, Zehua Liu, Chen Cui, Jiehua Wu, Haoyang Hu, Peng Sun, Guo-Qiang Liu, Jun Jiang

Summary: A n-type Bi2Te2.7Se0.3 + x wt% PbI2 polycrystalline material with high texture degree and various microstructures was prepared by the temperature gradient method. The dilute PbI2 doping not only adjusted the carrier concentration to an optimal level but also reduced the lattice thermal conductivity, resulting in a peak ZT of 1.26 and improved Vickers hardness of 0.48 GPa.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Materials Science, Multidisciplinary

High-performance Gd3Al4GaO12:Cr3+phosphors for next-generation far-red LEDs

Chen Jin, Ruiyang Li, Yongfu Liu, Chunhui Zhou, Peng Sun, Zhaohua Luo, Zehua Liu, Jun Jiang

Summary: An excellent FR phosphor, Gd3Al4GaO12:Cr3+, with good external quantum efficiency (EQE), suitable photoluminescence, and high thermal stability is developed by optimizing the sintering technology and chemical design. The phosphor has an emission peak at 734 nm and a band width of 70 nm, matching well with the PFR absorption band. By adjusting the flux of H3BO3 and Cr3+ concentration, the EQE reaches 47.2%, and the thermal stability remains at 96.8% at 423 K. The power-conversion efficiency of the FR pc-LED reaches 24.0% driven at 100 mA, demonstrating its high performance and promising applications in the next-generation FR light source.

MATERIALS RESEARCH BULLETIN (2023)

Article Engineering, Manufacturing

Investigation of variability in apparent values of materials properties in thermo-mechanical uniaxial tensile tests on sheet metals

Ruiqiang Zhang, Jun Jiang, Jianguo Lin, Victoria A. Yardley

Summary: Thermo-mechanical uniaxial tensile testing is commonly used to characterize material properties under advanced industrial forming processes. This study investigates the effect of nonuniform temperature distributions on the variability of thermo-mechanical properties and microstructures of tested specimens.

JOURNAL OF MANUFACTURING PROCESSES (2023)

Article Metallurgy & Metallurgical Engineering

Achieving high ductility and strength in magnesium alloy through cryogenic-hot forming

Kai Zhang, Zhutao Shao, Joseph Robson, Yan Huang, Jinghua Zheng, Jun Jiang

Summary: A new cryogenic-hot forming process concept is proposed and proven to improve the ductility and fracture strength of magnesium alloys. This is achieved through effective grain refinement and texture weakening, making it a potential innovative method for producing high-performance magnesium components.

JOURNAL OF MAGNESIUM AND ALLOYS (2023)

Article Materials Science, Multidisciplinary

Mismatched atomic bonds and ultralow thermal conductivity in Ag-based ternary chalcopyrites

Ruoyu Wang, Jianfeng Cai, Qiang Zhang, Xiaojian Tan, Jiehua Wu, Guoqiang Liu, Jun Jiang

Summary: Diamond like ternary chalcopyrites MBX2 (M = Cu, Ag; B = Ga, In, Tl; X = S, Se, Te) have attracted significant research attention in the field of thermoelectrics due to their competitive performance and diverse transport properties. The ultralow thermal conductivity of AgBX2 compared to CuBX2 is explained by the mismatched atomic bonds between Ag-X and B -X pairs, resulting from the weaker bonding strength of Ag-X due to the expanded 4d orbital of Ag. This study provides important insights into the ultralow thermal conductivity of Ag-based ternary chalcopyrites and suggests a general strategy to suppress thermal conductivity in ternary compounds.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)