4.8 Article

Fusion protein Isl1-Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1114515109

关键词

-

资金

  1. National Institutes of Health (NIH)/National Institute of Diabetes and Digestive and Kidney Diseases [R01 DK064678]
  2. NIH/National Institute of Neurological Disorders and Stroke [R01 NS054941]
  3. NIH [P01 GM81672]
  4. Pew Scholars Program
  5. Mrs. Clifford Elder White Graham Endowed Research Fund
  6. March of Dimes Foundation
  7. Christopher and Dana Reeve Foundation

向作者/读者索取更多资源

Combinatorial transcription codes generate the myriad of cell types during development and thus likely provide crucial insights into directed differentiation of stem cells to a specific cell type. The LIM complex composed of Isl1 and Lhx3 directs the specification of spinal motor neurons (MNs) in embryos. Here, we report that Isl1-Lhx3, a LIM-complex mimicking fusion, induces a signature of MN transcriptome and concomitantly suppresses interneuron differentiation programs, thereby serving as a potent and specific inducer of MNs in stem cells. We show that an equimolar ratio of Isl1 and Lhx3 and the LIM domain of Lhx3 are crucial for generating MNs without up-regulating interneuron genes. These led us to design Isl1-Lhx3, which maintains the desirable 1:1 ratio of Isl1 and Lhx3 and the LIM domain of Lhx3. Isl1-Lhx3 drives MN differentiation with high specificity and efficiency in the spinal cord and embryonic stem cells, bypassing the need for sonic hedgehog (Shh). RNA-seq analysis revealed that Isl1-Lhx3 induces the expression of a battery of MN genes that control various functional aspects of MNs, while suppressing key interneuron genes. Our studies uncover a highly efficient method for directed MN generation and MN gene networks. Our results also demonstrate a general strategy of using embryonic transcription complexes for producing specific cell types from stem cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据