4.8 Article

Energetic consequences of thermal and nonthermal food processing

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1112128108

关键词

caloric value; nutrition label; weight; energy balance; human evolution

资金

  1. National Science Foundation
  2. Harvard Department of Human Evolutionary Biology
  3. Harvard Museum of Comparative Zoology
  4. Stellenbosch Institute of Advanced Study

向作者/读者索取更多资源

Processing food extensively by thermal and nonthermal techniques is a unique and universal human practice. Food processing increases palatability and edibility and has been argued to increase energy gain. Although energy gain is a well-known effect from cooking starch-rich foods, the idea that cooking meat increases energy gain has never been tested. Moreover, the relative energetic advantages of cooking and nonthermal processing have not been assessed, whether for meat or starch-rich foods. Here, we describe a system for characterizing the energetic effects of cooking and nonthermal food processing. Using mice as a model, we show that cooking substantially increases the energy gained from meat, leading to elevations in body mass that are not attributable to differences in food intake or activity levels. The positive energetic effects of cooking were found to be superior to the effects of pounding in both meat and starch-rich tubers, a conclusion further supported by food preferences in fasted animals. Our results indicate significant contributions from cooking to both modern and ancestral human energy budgets. They also illuminate a weakness in current food labeling practices, which systematically overestimate the caloric potential of poorly processed foods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据