4.8 Article

Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1111420108

关键词

pulsed EPR; protein dynamics

资金

  1. National Institutes of Health [EY05216, T32 EY07026, 5P41EB001980]
  2. Hungarian National Research Fund OTKA [K81123]

向作者/读者索取更多资源

A disulfide-linked nitroxide side chain (R1) is the most widely used spin label for determining protein topology, mapping structural changes, and characterizing nanosecond backbone motions by site-directed spin labeling. Although the internal motion of R1 and the number of preferred rotamers are limited, translating interspin distance measurements and spatial orientation information into structural constraints is challenging. Here, we introduce a highly constrained nitroxide side chain designated RX as an alternative to R1 for these applications. RX is formed by a facile cross-linking reaction of a bifunctional methanethiosulfonate reagent with pairs of cysteine residues at i and i + 3 or i and i + 4 in an alpha-helix, at i and i + 2 in a beta-strand, or with cysteine residues in adjacent strands in a beta-sheet. Analysis of EPR spectra, a crystal structure of RX in T4 lysozyme, and pulsed electron-electron double resonance (ELDOR) spectroscopy on an immobilized protein containing RX all reveal a highly constrained internal motion of the side chain. Consistent with the constrained geometry, interspin distance distributions between pairs of RX side chains are narrower than those from analogous R1 pairs. As an important consequence of the constrained internal motion of RX, spectral diffusion detected with ELDOR reveals microsecond internal motions of the protein. Collectively, the data suggest that the RX side chain will be useful for distance mapping by EPR spectroscopy, determining spatial orientation of helical segments in oriented specimens, and measuring structural fluctuations on the microsecond time scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据