4.8 Article

Phylogenetic incongruence arising from fragmented speciation in enteric bacteria

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1001291107

关键词

recombination; species; Tree of Life; population structure; incomplete lineage sorting

资金

  1. National Institutes of Health [GM078092]

向作者/读者索取更多资源

Evolutionary relationships among species are often assumed to be fundamentally unambiguous, where genes within a genome are thought to evolve in concert and phylogenetic incongruence between individual orthologs is attributed to idiosyncrasies in their evolution. We have identified substantial incongruence between the phylogenies of orthologous genes in Escherichia, Salmonella, and Citrobacter, or E. coli, E. fergusonii, and E. albertii. The source of incongruence was inferred to be recombination, because individual genes support conflicting topology more robustly than expected from stochastic sequence homoplasies. Clustering of phylogenetically informative sites on the genome indicated that the regions of recombination extended over several kilobases. Analysis of phylogenetically distant taxa resulted in consensus among individual gene phylogenies, suggesting that recombination is not ongoing; instead, conflicting relationships among genes in descendent taxa reflect recombination among their ancestors. Incongruence could have resulted from random assortment of ancestral polymorphisms if species were instantly created from the division of a recombining population. However, the estimated branch lengths in alternative phylogenies would require ancestral populations with far more diversity than is found in extant populations. Rather, these and previous data collectively suggest that genome-wide recombination rates decreased gradually, with variation in rate among loci, leading to pluralistic relationships among their descendent taxa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据