4.8 Article

Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1008616107

关键词

amyloid fibrils; dewetting transition; electrostatic interactions; prion diseases

资金

  1. National Institutes of Health [R01GM076688-05]
  2. National Science Foundation [CHE 09-14033]
  3. Division of Scientific User Facilities, US Department of Energy [CNMS2007-048]
  4. National Science Foundation Teragrid [TG-MCB080035N]

向作者/读者索取更多资源

Amyloid-like fibrils from a number of small peptides that are unrelated by sequence adopt a cross-beta-spine in which the two sheets fully interdigitate to create a dry interface. Formation of such a dry interface is usually associated with self-assembly of extended hydrophobic surfaces. Here we investigate how a dry interface is created in the process of protofilament formation in vastly different sequences using two amyloidogenic peptides, one a polar sequence from the N terminus of the yeast prion Sup35 and the other a predominantly hydrophobic sequence from the C terminus of A beta-peptide. Using molecular dynamics simulations with three force fields we show that spontaneous formation of two ordered one-dimensional water wires in the pore between the two sheets of the Sup35 protofilaments results in long-lived structures, which are stabilized by a network of hydrogen bonds between the water molecules in the wires and the polar side chains in the beta-sheet. Upon decreasing the stability of the metastable structures, water molecules are expelled resulting in a helically twisted protofilament in which side chains from a pair of beta-strands in each sheet pack perfectly resulting in a dry interface. Although drying in hydrophobically dominated interfaces is abrupt, resembling a liquid to vapor transition, we find that discrete transitions between the liquid to one-dimensional ordered water in the nanopore enclosed by the two beta-sheets to dry interface formation characterizes protofilament assembly in the yeast prions. Indeed, as the two sheets of the hydrophobic A beta-sequence approach each other, fibril formation and expulsion of water molecules occur rapidly and nearly simultaneously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据