4.8 Article

Microhomology-mediated and nonhomologous repair of a double-strand break in the chloroplast genome of Arabidopsis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1004326107

关键词

DNA repair; evolution; homing endonuclease; I-CreII; plastid DNA

资金

  1. Department of Energy [DE-FG03-02ER15352]
  2. Welch Grant [F-1164]
  3. Texas-Advanced Research Program [003658-0144-2007]
  4. National Science Foundation [IOS-0822811, IOS-0849287]
  5. Division Of Integrative Organismal Systems
  6. Direct For Biological Sciences [0822811, 0849287] Funding Source: National Science Foundation

向作者/读者索取更多资源

Chloroplast DNA (cpDNA) is under great photooxidative stress, yet its evolution is very conservative compared with nuclear or mitochondrial genomes. It can be expected that DNA repair mechanisms play important roles in cpDNA survival and evolution, but they are poorly understood. To gain insight into how the most severe form of DNA damage, a double-strand break (DSB), is repaired, we have developed an inducible system in Arabidopsis that employs a psbA intron endonuclease from Chlamydomonas, I-CreII, that is targeted to the chloroplast using the rbcS1 transit peptide. In Chlamydomonas, an I-CreII-induced DSB in psbA was repaired, in the absence of the intron, by homologous recombination between repeated sequences (20-60 bp) abundant in that genome; Arabidopsis cpDNA is very repeat poor, however. Phenotypically strong and weak transgenic lines were examined and shown to correlate with I-CreII expression levels. Southern blot hybridizations indicated a substantial loss of DNA at the psbA locus, but not cpDNA as a whole, in the strongly expressing line. PCR analysis identified deletions nested around the I-CreII cleavage site indicative of DSB repair using microhomology (6-12 bp perfect repeats, or 10-16 bp with mismatches) and no homology. These results provide evidence of alternative DSB repair pathways in the Arabidopsis chloroplast that resemble the nuclear, microhomology-mediated and nonhomologous end joining pathways, in terms of the homology requirement. Moreover, when taken together with the results from Chlamydomonas, the data suggest an evolutionary relationship may exist between the repeat structure of the genome and the organelle's ability to repair broken chromosomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据