4.8 Article

Identified circuit in rat postrhinal cortex encodes essential information for performing specific visual shape discriminations

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0912950107

关键词

learning; vision; protein kinase C; neocortex; herpes simplex virus vector

资金

  1. National Institutes of Health [AG025894, NS045855, NS057558]
  2. National Science Foundation

向作者/读者索取更多资源

Learning theories hypothesize specific circuits encode essential information for performance. For simple tasks in invertebrates and mammals, the essential circuits are known, but for cognitive functions, the essential circuits remain unidentified. Here, we show that some essential information for performing a choice task is encoded in a specific circuit in a neocortical area. Rat postrhinal (POR) cortex is required for visual shape discriminations, protein kinase C (PKC) pathways mediate changes in neuronal physiology that support learning, and specific PKC genes are required for multiple learning tasks. We used direct gene transfer of a constitutively active PKC to prime a specific POR cortex circuit for learning visual shape discriminations. In the experiment, rats learned a discrimination, received gene transfer, learned new discriminations, received a small lesion that ablated approximate to 21% of POR cortex surrounding the gene transfer site, and were tested for performance for discriminations learned either before or after gene transfer. Lesions of the genetically targeted circuit selectively interfered with performance for discriminations learned after gene transfer. Activity-dependent gene imaging confirmed increased activity in the genetically targeted circuit during learning and showed the essential information was sparse-coded in approximate to 500 neurons in the lesioned area. Wild-type rats contained circuits with similar increases in activity during learning, but these circuits were located at unpredictable, different positions in POR cortex. These results establish that some essential information for performing specific visual discriminations can be encoded in a small, identified, neocortical circuit and provide a foundation for characterizing the circuit and essential information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据