4.8 Article

Allelic variation in the Tyk2 and EGF genes as potential genetic determinants of CNS repair

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0906589107

关键词

quantitative trait locus; remyelination; Theiler's murine encephalomyelitis virus; multiple sclerosis

资金

  1. National Institutes of Health [NS048357, NS24180]
  2. National Multiple Sclerosis Society [RG 3481A, CA1011A8, RG 3172A]
  3. Multiple Sclerosis International Federation

向作者/读者索取更多资源

The potential for endogenous remyelination and axonal protection can be an important factor in determining disease outcome in demyelinating diseases like multiple sclerosis. In many multiple sclerosis (MS) patients CNS repair fails or is incomplete whereas in others the disease is accompanied by extensive repair of demyelinated lesions. We have described significant differences in the ability of two strains of mice to repair CNS damage following Theiler's virus induced demyelination: FVB/NJ (FVB) mice repair damaged myelin spontaneously and completely, whereas B10.D1-H2(q)/SgJ (B10.Q) mice are deficient in the repair process. A QTL analysis was performed to identify genetic loci that differentially regulate CNS repair following chronic demyelination in these strains and two QTL were detected: one on chromosome 3 with a LOD score of 9.3 and a second on chromosome 9 with a LOD score of 14.0. The mouse genes for epidermal growth factor (EGF) and Tyk2 are encoded within the QTL on chromosomes 3 and 9, respectively. Sequence polymorphisms between the FVB and B10.Q strains at both the EGF and Tyk2 loci define functional variations consistent with roles for these genes in regulating myelin repair. EGF is a key regulator of cell growth and development and we show a seven fold increase in EGF expression in FVB compared to B10.Q mice. Tyk2 is a Janus kinase that plays a central role in controlling the T(H)1 immune response and we show that attenuation of Tyk2 function correlates with enhanced CNS repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据