4.8 Article

Manipulation of the mechanical properties of a virus by protein engineering

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0708017105

关键词

atomic force microscopy; nanomechanics; protein-DNA interactions

向作者/读者索取更多资源

In a previous study, we showed that the DNA molecule within a spherical virus (the minute virus of mice) plays an architectural role by anisotropically increasing the mechanical stiffness of the virus. A finite element model predicted that this mechanical reinforcement is a consequence of the interaction between crystallographically visible, short DNA patches and the inner capsid wall. We have now tested this model by using protein engineering. Selected amino acid side chains have been truncated to specifically remove major interactions between the capsid and the visible DNA patches, and the effect of the mutations on the stiffness of virus particles has been measured using atomic force microscopy. The mutations do not affect the stiffness of the empty capsid; however, they significantly reduce the difference in stiffness between the DNA-filled virion and the empty capsid. The results (i) reveal that intermolecular interactions between individual chemical groups contribute to the mechanical properties of a supramolecular assembly and (it) identify specific protein-DNA interactions as the origin of the anisotropic increase in the rigidity of a virus. This study also demonstrates that it is possible to control the mechanical properties of a protein nanoparticle by the rational application of protein engineering based on a mechanical model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据