4.8 Article

Behavioral tradeoff in estuarine larvae favors seaward migration over minimizing visibility to predators

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0704725105

关键词

dispersal; larval transport; vertical migration; phenotypic plasticity; species ranges

向作者/读者索取更多资源

The ability of microscopic larvae to control their fate and replenish populations in dynamic marine environments has been a long-running topic of debate of central importance to understanding the ecology and evolution of life in the sea and managing resources in a changing global environment. After decades of research documenting behaviors that keep larvae close to natal populations, it is becoming apparent that larval behaviors in a broader spectrum of species promote long-distance migrations to offshore nursery grounds. Larvae must exert considerable control over their movements. We now show that larval emigration from estuaries is favored even over minimizing visibility to predators. An enclogenous tidal vertical migration that would expedite seaward migration of Uca pugilator larvae was maintained experimentally across two tidal regimes. The periodicity of the rhythm doubled to match the local tidal regime, but larvae ascended to the surface during the daytime rather than at night. This process would conserve larval emigration but increase the visibility to predators across part of the species range. The periodicity of tidal vertical migration by Sesarma cinereum larvae failed to double and was inappropriately timed relative to both environmental cycles in the absence of a diel cycle. The timing system regulating tidally timed behaviors in these two species of crabs evidently differed. Phenotypic plasticity can conserve larval transport of both species when tidal and diel cycles are present. It may be widespread in the sea where diverse habitats are encountered across extensive species ranges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据