4.3 Article

On the λ ratio range of mixed lubrication

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1350650112461867

关键词

Mixed lubrication; elastohydrodynamic lubrication; mixed elastohydrodynamic lubrication; lambda ratio; film thickness ratio; roughness effect; elastohydrodynamic lubrication simulation; elastohydrodynamic lubrication experiment

资金

  1. State key laboratory of Mechanical Transmission, Chongqing University, China [0301002109159]
  2. Center for surface Engineering and Tribology at Northwestern University, USA

向作者/读者索取更多资源

Mixed lubrication is a mode of fluid lubrication in which both hydrodynamic lubricant film and rough surface asperity contact coexist. Mixed lubrication problems are usually associated with significant surface roughness effect. A common belief is that full-film lubrication occurs when the lambda ratio, defined as average film thickness divided by composite root mean square roughness, is greater than 3.0, while boundary lubrication corresponds to lambda < 0.5-1.0. Mixed lubrication, therefore, is roughly in the range 0.5-1.0 < lambda < 3.0. However, these considerations were established long ago based on early stochastic analyses, which did not adequately consider rough surface asperity interaction and correlation, as well as reduction of asperity heights caused by surface deformation. Recent experimental studies and deterministic numerical simulations suggested that the lambda ratio range of mixed lubrication needs to be re-visited. Actually, when the lambda ratio is greater than 0.6-1.2, little or no asperity contact is found in either experimental results or numerical solutions. If lambda is around 0.05-0.1, there may still be a considerable portion of load, e. g. greater than 10-15%, being supported by lubricant films. It appears that mixed lubrication spans a lambda ratio range roughly from 0.01-0.05 up to 0.6-1.2, according to the numerical simulation results presented in this article. This estimated range is in a reasonably good agreement with experimental observations found in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Engineering, Mechanical

A statistics view of contact pressure distribution for normal contact of fractal surfaces

Huiyi Yang, Yang Xu, Chao Xu

Summary: This study focuses on the impact of dry friction interfaces on the dynamics of jointed structures, particularly on the statistics of contact pressure distribution. Through experimental and simulation analysis, it is found that surface roughness and contact load have significant effects on contact area, contact stiffness, and mean contact pressure.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY (2024)

Article Engineering, Mechanical

Influence of the metal coating on nano-cutting process of cubic silicon carbide

Guanglan Hu, Houfu Dai

Summary: The effect of metal coating on the machinability of cubic silicon carbide was investigated using molecular dynamics simulation. The results showed that the type of coating has a significant impact on cutting force, surface morphology, stress, and tool wear. Among the three metals studied, Cu coating had the greatest impact on improving cutting performance.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY (2024)

Article Engineering, Mechanical

A new coated self-lubricating spherical plain bearing with high performance and excellent security

Yunfan Liu, Guozheng Ma, Lina Zhu, Cuihong Han, Zhen Li, Bin Zhang, Haichao Zhao, Haidou Wang, Shuying Chen

Summary: The service performance of coated self-lubricating spherical plain bearings can be improved by applying self-lubricating coatings, especially double-sided coatings. The presence of a large-area and complete mixed friction transfer film on the contact surfaces can cause a signal downstage before the signal mutation stage.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY (2024)

Article Engineering, Mechanical

Investigation of the tribological properties of POM and UHMWPE radial journal bearings made with different surface quality

Yakup Artun, C. Oktay Azeloglu, Gokhan Taylan

Summary: This article investigates the tribological properties of polymer journal bearings, particularly focusing on radial journal bearings made from UHMWPE and POM materials with different surface qualities. The study examines the performance of these bearings under varying load and speed conditions, and analyzes the relationship between material and surface roughness in tribological performance.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY (2024)