4.7 Article

Lithium-Ion Battery Systems

期刊

PROCEEDINGS OF THE IEEE
卷 102, 期 6, 页码 939-950

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JPROC.2014.2319832

关键词

Battery; cell chemistry; energy density; energy storage; life; lithium-iron phosphate; lithium manganite; lithium titanate; lithium ion; specific energy

向作者/读者索取更多资源

The production of lithium-ion (Li-ion) batteries has been continually increasing since their first introduction into the market in 1991 because of their excellent performance, which is related to their high specific energy, energy density, specific power, efficiency, and long life. Li-ion batteries were first used for consumer electronics products such as mobile phones, camcorders, and laptop computers, followed by automotive applications that emerged during the last decade and are still expanding, and finally industrial applications including energy storage. There are four promising cell chemistries considered for energy storage applications: 1) LiMn2O4/graphite cell chemistry uses low-cost materials that are naturally abundant; 2) LiNi1-X-Y2CoXAlYO2/graphite cell chemistry has high specific energy and long life; 3) LiFePO4/graphite (or carbon) cell chemistry has good safety characteristics; and 4) Li4Ti5O12 is used as the negative electrode material in Li-ion batteries with long life and good safety features. However, each of the cell chemistries has some disadvantages, and the development of these technologies is still in progress. Therefore, it is too early to predict which cell chemistry will be the main candidate for energy storage applications, and we have to remain vigilant with respect to trends in technological progress and also consider changes in economic and social conditions before this can be determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据