4.6 Article

Analysis of sub-grid scale modeling of the ideal-gas equation of state in hydrogen-oxygen premixed flames

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 37, 期 2, 页码 2345-2351

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2018.07.054

关键词

Equation of state; Hydrogen; Large eddy simulation; Sub-grid scale modeling; Deconvolution

向作者/读者索取更多资源

In large-eddy simulations (LES) of multicomponent and fully compressible flows, the spatially filtered pressure needs to be evaluated, i.e. the pressure averaged over a volume. The flow is non-homogeneous within this volume and the state relationship linking pressure, density, temperature and species mass fractions should not be applied directly to their values resolved on the LES mesh. In practice, the unresolved correlations between density, species and temperature are usually neglected to compute the filtered pressure from the resolved fields. Analyzing one-dimensional laminar and three-dimensional turbulent H-2/O-2 space-filtered flames under lean and stoichiometric conditions, it is observed that a large part of the error introduced by the linearization of the equation of state can be counterbalanced by expressing the mean molar weight of the mixture with the Reynolds filtered species mass fractions, instead of the density-weighted (Favre) mass fractions. A sub-grid scale closure for the remaining part of the unknown correlation is also proposed, which relies on a scale similarity assumption. Finally, an approximate deconvolution/filtering procedure is discussed to estimate the Reynolds filtered mass fractions from the density-weighted mass fractions, which are the transported quantities in LES flow solvers. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据