4.6 Article

Experimental and modeling study on the pyrolysis and oxidation of n-decane and n-dodecane

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 34, 期 -, 页码 361-368

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2012.06.156

关键词

Shock tube; n-Decane; n-Dodecane; Oxidation; Pyrolysis

资金

  1. Air Force Office of Scientific Research [FA9550-07-1-0515]

向作者/读者索取更多资源

High pressure n-decane and n-dodecane shock tube experiments were conducted to assist in the development of a Jet A surrogate kinetic model. Jet A is a kerosene based jet fuel composed of hundreds of hydrocarbons consisting of paraffins, olefins, aromatics and naphthenes. In the formulation of the surrogate mixture, n-decane or n-dodecane represent the normal paraffin class of hydrocarbons present in aviation fuels like Jet A. The experimental work on both n-alkanes was performed in a heated high pressure single pulse shock tube. The mole fractions of the stable species were determined using gas chromatography and mass spectroscopy. Experimental data on both n-decane and n-dodecane oxidation and pyrolysis were obtained for temperatures from 867 to 1739 K, pressures from 19 to 74 atm, reaction times from 1.15 to 3.47 ms, and equivalence ratios from 0.46 to 2.05, and infinity. Both n-decane and n-dodecane oxidation showed that the fuel decays through thermally driven oxygen free decomposition at the conditions studied. This observation prompted an experimental and modeling study of n-decane and n-dodecane pyrolysis using a recently submitted revised n-decane/iso-octane/toluene surrogate model. The surrogate model was extended to n-dodecane in order to facilitate the study of the species and the 1-olefin species quantified during the pyrolysis of n-dodecane and n-decane were revised with additional reactions and reaction rate constants modified with rate constants taken from literature. When compared against a recently published generalized n-alkane model and the original and revised surrogate models, the revised (based on our experimental work) and extended surrogate model showed improvements in predicting 1-olefin species profiles from pyrolytic and oxidative n-decane and n-dodecane experiments. The revised and extended model when compared to the published generalized n-alkane and surrogate models also showed improvements in predicting species profiles from flow reactor n-decane oxidation experiments, but similarly predicted n-decane and n-dodecane ignition delay times. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据