4.7 Article

Analytical model to locate the fluidisation interface in a solid-gas vacuum fluidised bed

期刊

POWDER TECHNOLOGY
卷 266, 期 -, 页码 463-474

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.powtec.2014.04.046

关键词

Vacuum fluidisation; Fluidisation interface; Segregation

向作者/读者索取更多资源

Vacuum fluidised beds have a distinct advantage of being operated with reduced mass consumption of the fluidising media. However, a low quality of fluidisation reduces the opportunity to utilise the bubbling regime in vacuum fluidised beds. Fluidisation maps are often used to depict the interface between the quiescent, bubbling and slugging regimes inside a fluidised bed. Such maps have been obtained by visual observations of the fluidisation interface in transparent fluidised beds. For beds which are visually inaccessible fluidisation maps are difficult to obtain. The present work therefore attempts to model the interface travel in a vacuum fluidised bed. The pressure gradient due to the bed weight has been determined to be a main contributor for fluidisation/defluidisation under vacuum. A simple analytical model based on the pressure gradient (PG model) is developed to predict the interface location in a vacuum fluidised bed. For a segregated bed, the Gibilaro-Rowe (GR) model is modified and used to predict the jetsam layer growth along with the fluidisation interface. The predictions are compared with the experimental data for minimally and highly segregated particles and it is seen that for non-segregated powders the predictions are quite accurate. Lack of sufficient knowledge of bubble characteristics, however, impeded accurate prediction of the jetsam growth especially at high flow rates. However, an approximate complete fluidisation interface is successfully predicted using the GR-PG model. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据