4.7 Article

Effect of nucleation temperature and heat transfer on synthesis of Ti and Fe boride nanoparticles in RF thermal plasmas

期刊

POWDER TECHNOLOGY
卷 246, 期 -, 页码 210-217

出版社

ELSEVIER
DOI: 10.1016/j.powtec.2013.05.028

关键词

RF thermal plasmas; Saturation vapor pressure; Nucleation temperature; Powder feed rate; Titanium boride nanoparticles; Iron boride nanoparticles

资金

  1. Grants-in-Aid for Scientific Research [23560182] Funding Source: KAKEN

向作者/读者索取更多资源

The roles of nucleation temperature and heat transfer of constituents used in the synthesis processes of transition metal boride (TMB) nanoparticles by radio frequency (RF) thermal plasma were investigated through the comparison between titanium and iron boride nanoparticles prepared in different raw powder feed rates. The molar ratio of metal boride in the product was decreased with increasing powder feed rate both in Ti-B and Fe-B systems. The main reason is extended evaporation time and vapor distribution of boron at high powder feed rate, which results in less reaction between boron nuclei and metal vapor. Meanwhile, titanium boride had the smaller mean particle diameter of 24.0 nm compared with that of 34.5 nm for iron boride. The size distributions of nanoparticles in Ti-B and Fe-B systems are 15-35 nm and 25-55 nm, respectively. In quantitative analysis, the content of titanium boride nanoparticles in the product was larger than that of iron boride. In both Ti-B and Fe-B systems, boron is nucleated first due to the lowest saturation vapor pressure, and then metal and boron vapors co-condense on boron nuclei. Since the melting point of boron is higher than nucleation temperatures of titanium and iron, high nucleation temperature of titanium leads to relatively long co-condensation time of boron and titanium in liquid state and relatively short co-condensation time of boron and titanium in supercooled liquid state compared with iron case. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据