4.5 Article

Thermal and mechanical properties of poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites

期刊

POLYMER INTERNATIONAL
卷 62, 期 1, 页码 64-70

出版社

WILEY
DOI: 10.1002/pi.4309

关键词

PCL; trisilanolphenyl POSS; nanocomposites; physical crosslinking; shape memory effect

资金

  1. Hanyang University [HY-2010-N]

向作者/读者索取更多资源

Poly(e-caprolactone) (PCL)/trisilanolphenyl polyhedral oligomeric silsesquioxane (TspPOSS) nanocomposites were prepared by solution mixing followed by film casting. Wide-angle X-ray diffraction and field-emission scanning electron microscopy observations showed that the POSS molecules formed crystal domains and dispersed uniformly on the nanoscale in the PCL matrix. Fourier transform infrared analysis of the nanocomposites revealed that there are hydrogen-bonded interactions between the silanol group of the TspPOSS and carbonyl oxygen of the PCL. Differential scanning calorimetry, tensile testing, and dynamic mechanical analysis (DMA) showed that, with increasing POSS content in the nanocomposites, the melting temperature and degree of crystallinity decreased while glass transition temperature, tensile modulus and strength increased without sacrificing the ductility of the PCL. DMA results also demonstrated the presence of a rubbery plateau above the melting temperature of the PCL/TspPOSS nanocomposites, and the moduli at the plateau region increased with increasing POSS content in the nanocomposites, implying that the PCL/TspPOSS nanocomposites formed a physically crosslinked structure. The physically crosslinked PCL/TspPOSS nanocomposites exhibited a thermally triggered shape memory effect. (C) 2012 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据