4.6 Article

Robust moving-blocker scatter correction for cone-beam computed tomography using multiple-view information

期刊

PLOS ONE
卷 12, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0189620

关键词

-

资金

  1. National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering [1R03EB021600-02]

向作者/读者索取更多资源

Scatter contamination is one of the main sources of decreasing the image quality in cone-beam computed tomography (CBCT). The moving blocker method is economic and effective for scatter correction (SC), which can simultaneously estimate scatter and reconstruct the complete volume within the field of view (FOV) from a single CBCT scan. However, at the regions with large intensity transition in the projection images along the axial blocker moving direction, the estimation of scatter signal from blocked regions in a single projection view can produce large error and cause significant artifacts in reconstructed images and null the usability of these regions. Furthermore, blocker edge detection error can significantly deteriorate both primary signal and scatter signal estimation and lead to unacceptable reconstruction results. In this study, we propose to use the adjacent multi-view projection images to jointly estimate scatter signal more accurately. In return, the more accurately estimated scatter signal can be utilized to detect blocker edges more accurately for greatly improved robustness of moving-blocker based SC. The experimental results using a Cat-phan phantom and an anthropomorphic pelvis phantom CBCT data show that the new method can effectively suppress the estimation errors of scatter signal in the fast signal transition regions and is able to correct the blocker detection errors. This development will expand the utility of moving-blocker based SC for the target with sharp intensity changes in the projection images and provide the needed robustness for its clinical translation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据