4.6 Article

New insights into the distribution, protein abundance and subcellular localisation of the endogenous peroxisomal biogenesis proteins PEX3 and PEX19 in different organs and cell types of the adult mouse

期刊

PLOS ONE
卷 12, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0183150

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (German Research Foundation, DFG)
  2. Klinische Forschergruppe 181 (Clinical Research Unit) [KFO 181]
  3. Justus Liebig University of Giessen

向作者/读者索取更多资源

Peroxisomes are ubiquitous organelles mainly involved in ROS and lipid metabolism. Their abundance, protein composition and metabolic function vary depending on the cell type and adjust to different intracellular and environmental factors such as oxidative stress or nutrition. The biogenesis and proliferation of these important organelles are regulated by proteins belonging to the peroxin (PEX) family. PEX3, an integral peroxisomal membrane protein, and the cytosolic shuttling receptor PEX19 are thought to be responsible for the early steps of peroxisome biogenesis and assembly of their matrix protein import machinery. Recently, both peroxins were suggested to be also involved in the autophagy of peroxisomes (pexophagy). Despite the fact that distribution and intracellular abundance of these proteins might regulate the turnover of the peroxisomal compartment in a cell type-specific manner, a comprehensive analysis of the endogenous PEX3 and PEX19 distribution in different organs is still missing. In this study, we have therefore generated antibodies against endogenous mouse PEX3 and PEX19 and analysed their abundance and subcellular localisation in various mouse organs, tissues and cell types and compared it to the one of three commonly used peroxisomal markers (PEX14, ABCD3 and catalase). Our results revealed that the abundance of PEX3, PEX19, PEX14, ABCD3 and catalase strongly varies in the analysed organs and cell types, suggesting that peroxisome abundance, biogenesis and matrix protein import are independently regulated. We further found that in some organs, such as heart and skeletal muscle, the majority of the shuttling receptor PEX19 is bound to the peroxisomal membrane and that a strong variability exists in the cell type-specific ratio of cytosol-and peroxisome-associated PEX19. In conclusion, our results indicate that peroxisomes in various cell types are heterogeneous with regards to their matrix, membrane and biogenesis proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据