4.8 Article

Connecting electrodes with light: one wire, many electrodes

期刊

CHEMICAL SCIENCE
卷 6, 期 12, 页码 6769-6776

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5sc03011k

关键词

-

资金

  1. Australian Research Council [DP1094564, DP150103065]
  2. Centre of Excellence for Convergent Bio-Nano Science and Technology [CE140100036]
  3. UNSW Node of the Australian National Fabrication Facility

向作者/读者索取更多资源

The requirement of a wire to each electrode is central to the design of any electronic device but can also be a major restriction. For example it entails space restrictions and rigid device architecture in multi-electrode devices. The finite space that is taken up by the array of electrical terminals and conductive pads also severely limits the achievable density of electrodes in the device. Here it is shown that a travelling light pointer can be used to form transient electrical connections anywhere on a monolithic semiconductor electrode that is fitted with a single peripheral electrical terminal. This is achieved using hydrogen terminated silicon electrodes that are modified with well-defined organic monolayers. It is shown that electrochemical information can be either read from or written onto these surfaces. Using this concept it is possible to form devices that are equivalent to a conventional electrode array but that do not require a predetermined architecture, and where each element of the array is temporally connected using light stimulus; a step change in capability for electrochemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Analytical

Thiolate DNAzymes on Gold Nanoparticles for Isothermal Amplification and Detection of Mesothelioma-derived Exosomal PD-L1 mRNA

Sareh Zhand, Ying Zhu, Hojjatollah Nazari, Mohammad Sadraeian, Majid Ebrahimi Warkiani, Dayong Jin

Summary: In this study, dithiol-modified Subzyme was attached to gold nanoparticles, leading to an improved limit of detection compared to using magnetic microparticles. The method was successfully applied to the detection of exosomal PD-L1 RNA with a limit of detection as low as 50 fM and a reaction time of 8 minutes. This work suggests new potentials for point-of-care testing in clinical applications.

ANALYTICAL CHEMISTRY (2023)

Article Biochemistry & Molecular Biology

Tuning the Mechanical Properties of Multiarm RAFT-Based Block Copolyelectrolyte Hydrogels via Ionic Cross-Linking for 3D Cell Cultures

Duyen H. T. Nguyen, Robert H. Utama, Kristel C. Tjandra, Panthipa Suwannakot, Eric Y. Du, Maria Kavallaris, Richard D. Tilley, J. Justin Gooding

Summary: This study develops a synthetic hydrogel with ionic cross-linking to rapidly create hydrogels. The mechanical stiffness of the hydrogel can be tuned by varying the number of charged ionic groups, the length of the polymer arms, and the polymer concentration. It is demonstrated as an extracellular matrix mimic for 3D in vitro cell models.

BIOMACROMOLECULES (2023)

Article Chemistry, Physical

Nanoconfinement Allows a Less Active Cascade Catalyst to Produce More C2+Products in Electrochemical CO2 Reduction

Samuel V. Somerville, Peter B. O'Mara, Tania M. Benedetti, Soshan Cheong, Wolfgang Schuhmann, Richard D. Tilley, J. Justin Gooding

Summary: Enzymes with multiple active sites and control over the solution environment enable the formation of complex products from simple reactants. We mimic this concept using nanoparticles to facilitate the electro-chemical carbon dioxide reduction reaction. By altering the rate of CO2 delivery, the activity of the CO producing site, and the applied potential, we show that stable nanoparticles with lower CO formation activity can produce greater amounts of hydrocarbon products. This highlights the importance of the local solution environment and the stability of the catalyst in cascade reactions.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Chemistry, Multidisciplinary

Approaches to Improving the Selectivity of Nanozymes

Samuel V. V. Somerville, Qinyu Li, Johanna Wordsworth, Sina Jamali, Mohammad Reza Eskandarian, Richard D. D. Tilley, J. Justin Gooding

Summary: Nanozymes mimic the selectivity of enzymes by utilizing features such as control over the arrangement of atoms in the active site and the placement of the active site down a nanoconfined substrate channel. The implementation of enzyme-inspired features has shown improvements in both activity and selectivity of nanoparticles for various catalytic and sensing applications. Controlled active sites on metal nanoparticle surfaces can be achieved through changing the composition of the surface metal or immobilizing single atoms on a metal substrate. Molecular frameworks and unique diffusional environments further enhance selectivity, while nanoconfined substrate channels offer additional control over selectivity through modifying the solution environment and transport of reactants and products.

ADVANCED MATERIALS (2023)

Article Chemistry, Analytical

Machine Learning Color Feature Analysis of a High Throughput Nanoparticle Conjugate Sensing Assay

Danielle Bennett, Xueqian Chen, Gregory J. Walker, Sacha Stelzer-Braid, William D. Rawlinson, D. Brynn Hibbert, Richard D. Tilley, J. Justin Gooding

Summary: Plasmonic nanoparticles in dimer format are used for single molecule sensing, where the interaction with hairpin DNA leads to a shift in localized surface plasmon resonance. Spectroscopy may detect this shift, but point-of-care devices require a faster analysis method. By using dark-field imaging and digital analysis, the plasmonic resonance shift of thousands of dimer structures can be measured in minutes. The challenge is separating dimers from non-specifically bound clusters to achieve accurate results. The LAB-based classifier algorithm demonstrated the highest accuracy for this digital separation.

ANALYTICAL CHEMISTRY (2023)

Correction Chemistry, Analytical

Machine Learning Color Feature Analysis of a High Throughput Nanoparticle Conjugate Sensing Assay (vol 95, pg 550, 2023)

Danielle Bennett, Xueqian Chen, Gregory J. Walker, Milad Mehdipour, Sacha Stelzer-Braid, William D. Rawlinson, D. Brynn Hibbert, Richard D. Tilley, J. Justin Gooding

ANALYTICAL CHEMISTRY (2023)

Editorial Material Chemistry, Analytical

Matrafured 2022 International Conference on Chemical Sensors

Eric Bakker, Philippe Buhlmann, J. Justin Gooding, Robert E. Gyurcsanyi, Ernoe Pretsch

ELECTROANALYSIS (2023)

Article Materials Science, Biomaterials

Electrostatic Assembly of Multiarm PEG-Based Hydrogels as Extracellular Matrix Mimics: Cell Response in the Presence and Absence of RGD Cell Adhesive Ligands

Panthipa Suwannakot, Stephanie Nemec, Newton Gil Peres, Eric Y. Du, Kristopher A. Kilian, Katharina Gaus, Maria Kavallaris, J. Justin Gooding

Summary: Synthetic hydrogels are widely used to mimic the extracellular matrix (ECM) and the physical and biochemical cues observed in natural ECM proteins. Researchers have developed an electrostatically crosslinked PEG-based hydrogel system to create high-throughput 3D in vitro models of the cancer environment. This hydrogel system can be degraded by breaking the interaction between oppositely charged polymer chains.

ACS BIOMATERIALS SCIENCE & ENGINEERING (2023)

Correction Chemistry, Analytical

Thiolate DNAzymes on Gold Nanoparticles for Isothermal Amplification and Detection of Mesothelioma-derived Exosomal PD-L1 mRNA (vol 95, pg 3228, 2023)

Sareh Zhand, Ying Zhu, Hojjatollah Nazari, Mohammad Sadraeian, Majid Ebrahimi Warkiani, Dayong Jin

ANALYTICAL CHEMISTRY (2023)

Article Biophysics

Electrochemical fluorescence switching of enhanced green fluorescent protein

Ying Yang, Sanjun Fan, James A. Webb, Yuanqing Ma, Jesse Goyette, Xueqian Chen, Katharina Gaus, Richard D. Tilley, Justin Gooding

Summary: This study presents an electrochemical approach to reversible fluorescence switching of enhanced green fluorescent proteins (EGFP) on indium tin oxide coated glass. The method allows efficient switching between bright (ON) and dim (OFF) states at the single molecule level. The electrochemical fluorescence switching is fast, reversible, and can be incorporated into advanced fluorescence microscopy.

BIOSENSORS & BIOELECTRONICS (2023)

Article Biophysics

The application of an applied electrical potential to generate electrical fields and forces to enhance affinity biosensors

Daniel E. Hagness, Ying Yang, Richard D. Tilley, J. Justin Gooding

Summary: Affinity biosensors play a crucial role in various areas of human health, such as clinical diagnosis and pharmaceuticals, by utilizing specific binding between target analytes and biological ligands. Electrokinetic phenomena have been investigated as a viable option to improve the performance of affinity biosensors for higher sensitivity and lower detection limit.

BIOSENSORS & BIOELECTRONICS (2023)

Article Chemistry, Analytical

Toward development of dual optical and electrical cell-based biosensor: An investigation on electrode geometry and transparent conductive material function

Seyedyousef Arman, Vinicius R. R. Goncales, Ying Yang, Richard D. D. Tilley, Katharina Gaus, J. Justin Gooding

Summary: This study explores a dual optical and electrical biosensor based on cells, which provides insights into cellular events. The fabrication steps and electrical characterization of microelectrodes are described. Initial experiments show that the ability of indium tin oxide (ITO) to detect biological cells at the electrode-cell layer interface mainly depends on the size of the sensing area. The impact of conductivity on the real-time impedance signal during cell adhesion on different substrates is also explored.

ELECTROANALYSIS (2023)

Editorial Material Chemistry, Multidisciplinary

Quantum Dots in Analysis Virtual Issue

J. Justin Gooding, Jean-Francois Masson

ACS SENSORS (2023)

Review Chemistry, Analytical

A review of electrochemical impedance as a tool for examining cell biology and subcellular mechanisms: merits, limits, and future prospects

Seyedyousef Arman, Richard D. Tilley, J. Justin Gooding

Summary: This article reviews the development of cellular impedance biosensors, electrochemical impedance spectroscopy, and the general principles and terms associated with the cell-electrode interface. This family of techniques provides real-time quantitative and sensitive information on cell responses to stimuli with high temporal resolution, and their applications in cell biology are illustrated with various examples. The current state of the field, its limitations, possible solutions, and the potential benefits of developing biosensors are discussed.

ANALYST (2023)

Article Chemistry, Physical

Oxidative Damage during the Operation of Si(211)-Based Triboelectric Nanogenerators

Carlos Hurtado, Simone Ciampi

Summary: This study investigates the underlying cause of surface wear during the operation of Triboelectric nanogenerators (TENGs) and reveals that surface damage is mainly caused by high pressure rather than current density. The study also discovers a delay in the occurrence of output drop during operation, which partially explains why the deterioration of DC-TENG performance is often underestimated or not reported.

SURFACES (2023)

Article Chemistry, Multidisciplinary

Iodide oxidation by ozone at the surface of aqueous microdroplets

Alexander M. Prophet, Kritanjan Polley, Gary J. Van Berkel, David T. Limmer, Kevin R. Wilson

Summary: The oxidation kinetics of iodide by ozone at the air-water interface is studied in single microdroplets. Molecular simulations and kinetic modeling are used to understand the underlying multiphase mechanism.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Aggregate assembly of ferrocene functionalized indium-oxo clusters

Rong Zhang, Jiajing Lan, Fei Wang, Shumei Chen, Jian Zhang

Summary: By utilizing 1,1'-ferrocene dicarboxylic acid as a chelating and surface protection ligand, we have synthesized multi-nuclear indium oxide clusters with varying nuclear sizes, including heptanuclear and thirteen-nuclear clusters. These clusters possess labile coordination sites, allowing for structural modification and self-assembly, resulting in the formation of various cluster structures.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Cucurbituril-based supramolecular host-guest complexes: single-crystal structures and dual-state fluorescence enhancement

Hui Wang, Hui Liu, Mingsen Wang, Jiaheng Hou, Yongjun Li, Yuancheng Wang, Yingjie Zhao

Summary: Two supramolecular complexes were prepared using CBs and M1, and their single-crystal structures were analyzed by SCXRD. The unexpected 1:2 self-assembly structure between M1 and CB[8] was discovered for the first time. These complexes exhibit unique photophysical properties and provide valuable information about the structure and photophysical properties of supramolecular complexes.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Engineering of cell-surface receptors for analysis of receptor internalization and detection of receptor-specific glycosylation

Chang-Hee Lee, Sookil Park, Sanggil Kim, Ji Young Hyun, Hyun Soo Lee, Injae Shin

Summary: The epidermal growth factor receptor (EGFR) is a cell-surface glycoprotein involved in cell proliferation and tumor development. This study used a fluorescently labeled EGFR to investigate its time-dependent endocytosis in live cells and found that appended glycans affect EGFR internalization. Additionally, the study detected sialic acid residues attached to EGFR on the live cell surface using FRET-based imaging. This research provides valuable insights into the cellular functions of EGFR.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Ultrasensitive detection of aromatic water pollutants through protein immobilization driven organic electrochemical transistors

Subhankar Sahu, Lokesh Kumar, Sumita Das, Dipti Gupta, Ruchi Anand

Summary: This study proposes a strategy that combines organic electronics with biosensor scaffolds to create a compact device for monitoring environmental aromatic pollution. By coupling biosensing protein MopR with an organic electrochemical transistor (OECT), a sensor module capable of efficient detection of phenol was designed. Exclusive phenol detection with minimal loss of sensitivity could be achieved in complex pollutant mixtures and real environmental samples.

CHEMICAL SCIENCE (2024)

Review Chemistry, Multidisciplinary

NiH-catalyzed C-N bond formation: insights and advancements in hydroamination of unsaturated hydrocarbons

Changseok Lee, Hyung-Joon Kang, Sungwoo Hong

Summary: The formation of C-N bonds through hydroamination reactions catalyzed by nickel hydrides has been a topic of recent interest. This approach offers a way to efficiently transform a variety of alkene and alkyne substrates into compounds enriched with C-N bonds. The review provides a concise overview of the underlying reaction mechanisms and aims to stimulate further progress in NiH-catalytic techniques and catalyst design.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Selective FRET nano probe based on carbon dots and naphthalimide-isatin for the ratiometric detection of peroxynitrite in drug-induced liver injury

Yueci Wu, Lu-Lu Sun, Hai-Hao Han, Xiao-Peng He, Weiguo Cao, Tony D. James

Summary: Drug-induced liver injury (DILI) is a common cause of acute liver failure in the USA and Europe, but most cases can be recovered or prevented by discontinuing the offending drug. Recent research has found that peroxynitrite (ONOO-) can be used as a potential indicator for early diagnosis of DILI, and there is an urgent need to establish a method to detect and track peroxynitrite in DILI cases. In this study, a FRET-based nano fluorescent probe CD-N-I was developed, which showed high selectivity and sensitivity in detecting peroxynitrite. The probe successfully detected exogenous peroxynitrite in live cells and endogenous peroxynitrite in APAP-induced liver injury of HepG2 cells.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Direct conversion of carboxylic acids to free thiols via radical relay acridine photocatalysis enabled by N-O bond cleavage

Dmitry L. Lipilin, Mikhail O. Zubkov, Mikhail D. Kosobokov, Alexander D. Dilman

Summary: This article describes a direct photocatalytic method for the thiolation of unprotected acids, which was previously challenging. By using a thionocarbonate reagent with an N-O bond, the efficient conversion of carboxylic acids to thiols is achieved.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Towards routine organic structure determination using Raman microscopy

Jason Malenfant, Lucille Kuster, Yohann Gagne, Kouassi Signo, Maxime Denis, Sylvain Canesi, Mathieu Frenette

Summary: Raman microscopy can reveal compound-specific vibrational fingerprints without sample preparation. The combination of efficient theoretical calculations and a user-friendly software can accurately predict peak positions and provide match scores to assist with structure determination.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Metal selectivity and translocation mechanism characterization in proteoliposomes of the transmembrane NiCoT transporter NixA from Helicobacter pylori

Jayoh A. Hernandez, Paul S. Micus, Sean Alec Lois Sunga, Luca Mazzei, Stefano Ciurli, Gabriele Meloni

Summary: Essential trace metals play crucial roles in the survival and virulence of bacterial pathogens. Helicobacter pylori requires nickel for colonization and persistence in the stomach, and NixA is an essential nickel transporter in this process. This study characterizes the selectivity and electrogenic nature of NixA-mediated nickel transport.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

A high-spin alkylperoxo-iron(III) complex with cis-anionic ligands: implications for the superoxide reductase mechanism

Tarali Devi, Kuheli Dutta, Jennifer Deutscher, Stefan Mebs, Uwe Kuhlmann, Michael Haumann, Beatrice Cula, Holger Dau, Peter Hildebrandt, Kallol Ray

Summary: This study emphasizes the importance of subtle electronic changes and secondary interactions in the stability of biologically relevant metal-dioxygen intermediates. It also shows that the role of the chloride ligand in stabilizing the Fe-III-(OOBu)-Bu-t moiety can extend to other anions, including the thiolate ligand.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Effects of altered backbone composition on the folding kinetics and mechanism of an ultrafast-folding protein

Jacqueline R. Santhouse, Jeremy M. G. Leung, Lillian T. Chong, W. Seth Horne

Summary: By studying the folding kinetics and mechanism of the BdpA sequence, researchers found that altering the backbone connectivity can affect protein folding. This suggests that protein mimetic chains have a significant degree of plasticity in transitioning between unfolded and folded states.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Strain induced reactivity of cyclic iminoboranes: the (2+2) cycloaddition of a 1H-1,3,2-diazaborepine with ethene

Divanshu Gupta, Ralf Einholz, Holger F. Bettinger

Summary: This study presents the first direct spectroscopic evidence of a cyclic seven-membered iminoborane. Compared to linear amino-iminoboranes, this cyclic iminoborane exhibits weakened bond strength and lower Lewis acidity value. The study suggests that the reduced ring strain of cyclic iminoborane prevents nitrogen fixation but allows facile (2 + 2) cycloaddition reaction with C2H4.

CHEMICAL SCIENCE (2024)

Article Chemistry, Multidisciplinary

Unveiling the topology of partially disordered micro-crystalline nitro-perylenediimide with X-aggregate stacking: an integrated approach

Renny Mathew, Aniruddha Mazumder, Praveen Kumar, Julie Matula, Sharmarke Mohamed, Petr Brazda, Mahesh Hariharan, Brijith Thomas

Summary: This study reveals the packing arrangement of partially disordered nitro-perylenediimide (NO2-PDI) using a synergistic approach that combines 3D ED, ssNMR, and DFT techniques. By overcoming these challenges, this methodology opens up new avenues for material characterization, driving exciting advancements in the field.

CHEMICAL SCIENCE (2024)