4.6 Article

Tim-3 Is Upregulated in NK Cells during Early Pregnancy and Inhibits NK Cytotoxicity toward Trophoblast in Galectin-9 Dependent Pathway

期刊

PLOS ONE
卷 11, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0147186

关键词

-

资金

  1. National Natural Science Foundation of China [31470885, 31300752, 31270971, 81300510, 30901326, 81072406]

向作者/读者索取更多资源

NK cells accumulate at the maternal-fetal interface (MFI) and play essential roles in maintaining immune tolerance during pregnancy. The mechanisms that facilitate NK cells tolerance to fetal tissue are largely unknown. T cell Ig and mucin domain-containing protein 3 (Tim-3) is a newly defined molecule with essential immunological function in many physiological and pathological processes. Recent study showed that Tim-3 was involved in the regulation of immune tolerance at MFI. However, whether Tim-3 regulates NK cells cytotoxicity toward trophoblasts is unclear. Here, we showed Tim-3 was mainly expressed by decidual NK cells (dNK) and Tim-3 level in dNK was higher than peripheral NK cells (pNK). Tim-3(+) dNK expressed more levels of mature markers CD94 and CD69 than Tim-3(-) dNK cells and blocking Tim-3 significantly inhibited dNK IFN-gamma and TNF-alpha secretion. Furthermore, we found TGF-beta 1 may contribute to such up-regulation of Tim-3 in NK cells. Interestingly, blocking Tim-3 enhanced NK cytotoxicity toward trophoblast cell line HTR-8 but not K562. We found HTR-8 expressed Tim-3 ligand Galectin-9, in contrast K562 did not. Small interfering RNA-mediated silencing of Galectin-9 expression enhanced NK cytotoxicity toward HTR-8. We further showed Tim-3/Galecin-9 inhibited NK cytotoxicity toward trophoblast partially via impairing the degranulation process. In addition, clinical data showed that abnormal Tim-3 level on pNK might be associated with recurrent spontaneous abortion (RSA). Thus, our data demonstrate Tim-3/Galectin-9 pathway maintains local tolerance by suppressing NK cytotoxicity toward trophoblasts which may represent a new immunologic tolerance mechanism at MFI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据