4.6 Article

The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH

期刊

PLOS ONE
卷 10, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0139224

关键词

-

资金

  1. Carl Trygger Foundation for Scientific Research [10:318, 11:381, 12:397]
  2. Faculty of Science at Lund University

向作者/读者索取更多资源

NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K-0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O-2 and decylubiquinone as electron acceptors. The K-0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K-0.5(Ca2+) for NADPH oxidation was high (approximate to 100 mu M), yet 20-fold lower K-0.5(Ca2+) values were determined at pH 6.8. Lower K-0.5(Ca2+) values were observed with decylubiquinone than with O-2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据